This work explores the possibilities of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct analysis of carbon nanotubes. In particular, the simultaneous determination of Co, Fe, Ni and Pb is intended, as these elements are typically found in these samples as impurities. The results demonstrate that it is possible to find spectral (monitoring of the region between 283.168 and 283.481 nm), furnace (2500 C for atomization; use of 100 ng Pd as a chemical modifier) and detector (use of side pixels to expand the linear range) conditions that permit the development of a fast and straightforward method for the simultaneous determination of the target elements at the levels at which they are typically found (mg g À1 for Co, Fe and Ni; mg g À1 for Pb) in carbon nanotubes. Limits of detection of 23 pg (Pb), 6 ng (Fe), 65 ng (Ni) and 86 ng (Co) were obtained, which are suitable for this type of sample. In this way, it was feasible to carry out the analysis of the samples investigated (one candidate reference material and three commercially available samples) and achieve accurate results when constructing the calibration curve with aqueous standards.Precision values for 5 solid sample replicates varied between 7 and 15% RSD in most cases. Overall, the proposed method shows important benefits for the cost-effective analysis of such complex samples in routine labs.
This work examines the new possibilities introduced with the arrival of commercially available high-resolution continuum source atomic absorption spectrometers for the determination of metalloids (B, Si, Ge, As, Se, Sb and Te) and non-metals (P, S, F, Cl, Br, I and N-based species), such as the improved potential to detect and correct for spectral overlaps and the strategies available to correct for matrix effects. In particular, and considering the increasing number of papers reporting on the use of molecular absorption spectrometry using graphite furnaces and flames as vaporizers, the work discusses in detail the advantages and limitations derived from the monitoring of molecular spectra from a practical point of view, in an attempt to guide future users of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.