Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation–condensation flow–levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.
The antimicrobial effects of silver (Ag) ions and salts are well known. However, the antimicrobial effects, mechanism, and the cytotoxic activity in vitro of Ag nanoparticles (AgNP) has recently been validated. In this work, we report the green synthesis of AgNPs using the extract of Eichhornia crassipes as a reducing agent and evaluate its antimicrobial activity against Escherichia coli (ATCC-25922). The morphology, size, chemical composition, and inhibition properties of the nanoparticles as a function of the reduction time and temperature were analyzed. According to TEM imaging, nanoparticles with average diameters between 20–40 nm were synthesized. Antibacterial results suggest that AgNPs can be used as an effective growth inhibitor with higher antimicrobial activity against Escherichia coli after 120 min of reaction with a synthesis temperature of 95°. More extensive analysis is required for the appropriate selection of the synthesis parameters and adequate concentration for use in biomedical applications and antibacterial control systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.