Directed evolution has been used for decades to engineer biological systems from the top-down. Generally, it has been applied at or below the organismal level, by iteratively sampling the mutational landscape in a guided search for genetic variants of higher function. Above the organismal level, a small number of studies have attempted to artificially select microbial communities and ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is still limited, particularly for large assemblages of asexual organisms, and we know little about designing efficient methods to direct their evolution. To address this issue, we have developed a flexible modeling framework that allows us to systematically probe any arbitrary selection strategy on any arbitrary set of communities and selected functions, in a wide range of ecological conditions. By artificially selecting hundreds of in-silico microbial metacommunities under identical conditions, we examine the fundamental limits of the two main breeding methods used so far, and prescribe modifications that significantly increase their power. We identify a range of directed evolution strategies that, particularly when applied in combination, are better suited for the top-down engineering of large, diverse, and stable microbial consortia. Our results emphasize that directed evolution allows an ecological structure-function landscape to be navigated in search for dynamically stable and ecologically and functionally resilient high-functioning communities.1 .
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype–phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure–function landscape and propose practical guidelines for navigating these ecological landscapes. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems.
To develop a quantitative theory that can predict how microbiomes assemble, and how they respond to perturbations, we must identify which descriptive features of microbial communities are reproducible and predictable, which are unpredictable, and why. The emergent metagenomic structure of communities is often quantitatively convergent in similar habitats, with highly similar fractions of the metagenome being devoted to the same metabolic pathways. By contrast, the species-level taxonomic composition is often highly variable even in replicate environments. The mechanisms behind these patterns are not yet understood. By studying the self-assembly of hundreds of communities in replicate, synthetic habitats, we show that the reproducibility of microbial community assembly reflects an emergent metabolic structure, which is quantitatively predictable from first-principles, genome-scale metabolic models. Taxonomic variability within functional groups arises through multistability in population dynamics, and the species-level community composition is predictably governed by the mutual competitive exclusion of two sub-dominant strains. Our findings provide a mechanistic bridge between microbial community structure at different levels of organization, and show that the evolutionary conservation of metabolic traits, both in terms of growth responses and niches constructed, can be leveraged to quantitatively predict the taxonomic and metabolic structure of microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.