In 70 healthy subjects with a large age range, the relationships between plasma tumor necrosis factor-α (TNF-α) and body composition, insulin action, and substrate oxidation were investigated. In the cross-sectional study ( n = 70), advancing age correlated with plasma TNF-α concentration ( r = 0.64, P < 0.001) and whole body glucose disposal (WBGD; r= −0.38, P < 0.01). The correlation between plasma TNF-α and age was independent of sex and body fat (BF; r = 0.31, P < 0.01). Independent of age and sex, a significant relationship between plasma TNF-α and leptin concentration ( r = 0.29, P < 0.02) was also found. After control for age, sex, BF, and waist-to-hip ratio (WHR), plasma TNF-α was still correlated with WBGD ( r = −0.33, P < 0.007). Further correction for plasma free fatty acid (FFA) concentration made the latter correlation no more significant. In a multivariate analysis, a model made by age, sex, BF, fat- free mass, WHR, and plasma TNF-α concentrations explained 69% of WBGD variability with age ( P < 0.009), BF ( P < 0.006), fat-free mass ( P < 0.005), and plasma TNF-α ( P < 0.05) significantly and independently associated with WBGD. In the longitudinal study, made with subjects at the highest tertiles of plasma TNF-α concentration ( n = 50), plasma TNF-α concentration predicted a decline in WBGD independent of age, sex, BF, WHR [relative risk (RR) = 2.0; 95% confidence intervals (CI) = 1.2–2.4]. After further adjustment for plasma fasting FFA concentration, the predictive role of fasting plasma TNF-α concentration on WBGD (RR = 1.2; CI = 0.8–1.5) was no more significant. In conclusion, our study demonstrates that plasma TNF-α concentration is significantly associated with advancing age and that it predicts the impairment in insulin action with advancing age.
Background and Objectives: Chronic obstructive pulmonary disease (COPD) affects over 250 million people globally, carrying a notable economic burden. This systematic literature review aimed to highlight the economic burden associated with moderate-to-very severe COPD and to investigate key drivers of healthcare resource utilization (HRU), direct costs and indirect costs for this patient population. Materials and Methods: Relevant publications published between January 1, 2006 and November 14, 2016 were captured from the Embase, MEDLINE and MEDLINE In-Process databases. Supplemental searches from relevant 2015-2016 conferences were also performed. Titles and abstracts were reviewed by two independent researchers against predefined inclusion and exclusion criteria. Studies were grouped by the type of economic outcome presented (HRU or costs). Where possible, data were also grouped according to COPD severity and/or patient exacerbation history. Results: In total, 73 primary publications were included in this review: 66 reported HRU, 22 reported direct costs and one reported indirect costs. Most of the studies (94%) reported on data from either Europe or North America. Trends were noted across multiple studies for higher direct costs (including mean costs per patient per year and mean costs per exacerbation) being associated with increasingly severe COPD and/or a history of more frequent or severe exacerbations. Similar trends were noted according to COPD severity and/or exacerbation history for rate of hospitalization and primary care visits. Multivariate analyses were reported by 29 studies and demonstrated the statistical significance of these associations. Several other drivers of increased costs and HRU were highlighted for patients with moderate-to-very severe COPD, including comorbidities, and treatment history. Conclusion: Moderate-to-very severe COPD represents a considerable economic burden for healthcare providers despite the availability of efficacious treatments and comprehensive guidelines on their use. Further research is warranted to ensure cost-efficient COPD management, to improve treatments and ease budgetary pressures.
Rationale About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. Objective To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. Methods and results We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. Conclusions The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.