In the last decade, two-photon polymerization (2PP) has gained increasing interest for the production of individually shaped 3D structures. For the successful implementation of 2PP within a production chain for the industrial manufacturing of optical microstructures, advanced material properties of the photo polymer are required. The usable laser dynamic range, shape accuracy as well as surface roughness play a crucial role. In this publication, we present the results of an iterative optimization process aiming at a material applicable for 3D structures written by 2PP. The special focus here lies on the influence of the photo initiator and stabilizer on the usable laser dynamic range and shape fidelity. The application of the optimized photo polymer for the production of a complex prism array, which could be used as master mold, is also shown.
The ongoing advancement of lithographic manufacturing in micro- and nanopatterning rely on the commercial availability of innovative photoresists, polymers and photopolymers as well as complementary process chemicals: This allows to enhance current micro- and nanofabrication technologies by increasing the overall pattern complexity or general process simplicity. In this contribution, we demonstrate that material innovations have a significant part in enhancing micro- and nanofabrication by outperforming generic photoresists through cross-functionality as it is increasingly required in ever growing pattern complexity (e.g. advanced mix-and-match methods) or when additional material features are set by the final application.
Hybrid Polymers are a material class established in the industry for manufacturing of high-performance optical components, mainly patterned by (nano)imprint processes. Recently, the application range of Hybrid Polymers has been extended into bonding and passivation. In this context, patterning by classical UV-lithography has come into focus as an alternative patterning method to (nano)imprinting. By applying a two-stage curing process with a high intensity, low dose patterning step and a high dose flood exposure after development, it is possible to realize previously unattainable resolutions limits for Hybrid Polymers of 6μm L/S and aspect ratios of more than 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.