The crystal structure of a novel dimeric β-D-galactosidase from Paracoccus sp. 32d (ParβDG) was solved in space group P212121 at a resolution of 2.4 Å by molecular replacement with multiple models using the BALBES software. This enzyme belongs to glycoside hydrolase family 2 (GH2), similar to the tetrameric and hexameric β-D-galactosidases from Escherichia coli and Arthrobacter sp. C2-2, respectively. It is the second known structure of a cold-active GH2 β-galactosidase, and the first in the form of a functional dimer, which is also present in the asymmetric unit. Cold-adapted β-D-galactosidases have been the focus of extensive research owing to their utility in a variety of industrial technologies. One of their most appealing applications is in the hydrolysis of lactose, which not only results in the production of lactose-free dairy, but also eliminates the `sandy effect' and increases the sweetness of the product, thus enhancing its quality. The determined crystal structure represents the five-domain architecture of the enzyme, with its active site located in close vicinity to the dimer interface. To identify the amino-acid residues involved in the catalytic reaction and to obtain a better understanding of the mechanism of action of this atypical β-D-galactosidase, the crystal structure in complex with galactose (ParβDG-Gal) was also determined. The catalytic site of the enzyme is created by amino-acid residues from the central domain 3 and from domain 4 of an adjacent monomer. The crystal structure of this dimeric β-D-galactosidase reveals significant differences in comparison to other β-galactosidases. The largest difference is in the fifth domain, named Bgal_windup domain 5 in ParβDG, which contributes to stabilization of the functional dimer. The location of this domain 5, which is unique in size and structure, may be one of the factors responsible for the creation of a functional dimer and cold-adaptation of this enzyme.
ArthβDG is a dimeric, cold-adapted β-d-galactosidase that exhibits high hydrolytic and transglycosylation activity. A series of crystal structures of its wild form, as well as its ArthβDG_E441Q mutein complexes with ligands were obtained in order to describe the mode of its action. The ArthβDG_E441Q mutein is an inactive form of the enzyme designed to enable observation of enzyme interaction with its substrate. The resulting three-dimensional structures of complexes: ArthβDG_E441Q/LACs and ArthβDG/IPTG (ligand bound in shallow mode) and structures of complexes ArthβDG_E441Q/LACd, ArthβDG/ONPG (ligands bound in deep mode), and galactose ArthβDG/GAL and their analysis enabled structural characterization of the hydrolysis reaction mechanism. Furthermore, comparative analysis with mesophilic analogs revealed the most striking differences in catalysis mechanisms. The key role in substrate transfer from shallow to deep binding mode involves rotation of the F581 side chain. It is worth noting that the 10-aa loop restricting access to the active site in mesophilic GH2 βDGs, in ArthβDG is moved outward. This facilitates access of substrate to active site. Such a permanent exposure of the entrance to the active site may be a key factor for improved turnover rate of the cold adapted enzyme and thus a structural feature related to its cold adaptation.
Aminotransferases (ATs) are enzymes that are commonly used in the chemical and pharmaceutical industries for the synthesis of natural and non-natural amino acids by transamination reactions. Currently, the easily accessible enzymes from mesophilic organisms are most commonly used; however, for economical and ecological reasons the utilization of aminotransferases from psychrophiles would be more advantageous, as their optimum reaction temperature is usually significantly lower than for the mesophilic ATs. Here, gene isolation, protein expression, purification, enzymatic properties and structural studies are reported for the cold-active aromatic amino-acid aminotransferase (PsyArAT) from Psychrobacter sp. B6, a psychrotrophic, Gram-negative strain from Antarctic soil. Preliminary computational analysis indicated dual functionality of the enzyme through the ability to utilize both aromatic amino acids and aspartate as substrates. This postulation was confirmed by enzymatic activity tests, which showed that it belonged to the class EC 2.6.1.57. The first crystal structures of a psychrophilic aromatic amino-acid aminotransferase have been determined at resolutions of 2.19 Å for the native enzyme (PsyArAT) and 2.76 Å for its complex with aspartic acid (PsyArAT/D). Both types of crystals grew in the monoclinic space group P21 under slightly different crystallization conditions. The PsyArAT crystals contained a dimer (90 kDa) in the asymmetric unit, which corresponds to the active form of this enzyme, whereas the crystals of the PsyArAT/D complex included four dimers showing different stages of the transamination reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.