SummaryTwo theories of how energy metabolism should be associated with longevity, both mediated via free-radical production, make completely contrary predictions. . We sought associations between longevity and individual variations in energy metabolism in a cohort of outbred mice. We found a positive association between metabolic intensity (kJ daily food assimilation expressed as g/body mass) and lifespan, but no relationships of lifespan to body mass, fat mass or lean body mass. Mice in the upper quartile of metabolic intensities had greater resting oxygen consumption by 17% and lived 36% longer than mice in the lowest intensity quartile. Mitochondria isolated from the skeletal muscle of mice in the upper quartile had higher proton conductance than mitochondria from mice from the lowest quartile. The higher conductance was caused by higher levels of endogenous activators of proton leak through the adenine nucleotide translocase and uncoupling protein-3. Individuals with high metabolism were therefore more uncoupled, had greater resting and total daily energy expenditures and survived longestsupporting the 'uncoupling to survive' hypothesis.
Basal metabolic rate (BMR) was established as a common reference point allowing comparable measures across different individuals and species. BMR is often regarded as a minimal rate of metabolism compatible with basic processes necessary to sustain life. One confusing aspect, however, is that BMR is highly variable, both within and between species. A potential explanation for this variability is that while individuals with high BMRs may suffer the disadvantage of having to feed for longer to cover the extra energy demands, this may be offset by advantages that accrue because of the high metabolic rate. One suggested advantage is that high levels of BMR are a consequence of maintaining a morphology that permits high rates of the maximal sustained rate of metabolism (SusMR)--the rate of metabolism that can be sustained for days or weeks. We have been studying the energetics of MF1 laboratory mice during peak lactation to investigate this idea. In this article, we review some of our work in connection with three particular predictions that derive from the hypothesised links among morphology, basal metabolism, and sustained metabolic rate. By comparing groups of individuals, for example, lactating and nonlactating individuals, the patterns that emerge are broadly consistent with the hypothesis that BMR and SusMR are linked by morphology. Lactating mice have bigger organs connected with energy acquisition and utilisation, greater resting metabolic rates in the thermoneutral zone, called RMRt (approximately equivalent to BMR), and high sustainable rates of maximal energy intake. However, when attempts are made to establish these relationships across individuals within lactating mice, the associations that are anticipated are either absent or very weak and depend on shared variation due to body mass. At this level there is very little support for the suggestion that variation in RMRt (and thus BMR) is sustained by associations with SusMR.
ABSTRACT. Background. Low levels of energy expenditure and aerobic fitness have been hypothesized to be risk factors for obesity. Longitudinal studies to determine whether energy expenditure influences weight gain in whites have provided conflicting results. To date, no studies have examined this relationship in blacks or whether aerobic fitness influences weight gain in white or black children.Methods. One hundred fifteen children, 72 white (55 girls and 17 boys) and 43 black (24 girls and 19 boys) were recruited for this study. Aerobic fitness, resting, total, and activity-related energy expenditure and body composition were measured at baseline. The children returned annually for 3 to 5 repeated measures of body composition. The influence of the initial measures of energy expenditure and fitness on the subsequent rate of increase in adiposity was examined, adjusting for initial body composition, age, ethnicity, gender, and Tanner stage. Because 20 children did not attain maximum oxygen consumption, the sample size for the combined analysis was 95.Results. Initial fat mass was the main predictor of increasing adiposity in this cohort of children, with greater initial fat predicting a higher rate of increase of adiposity. There was also a significant negative relationship between aerobic fitness and the rate of increasing adiposity (F 1,82 ؍ 3.92). With every increase of .1 L/minute of fitness, there was a decrease of .081 kg fat per kg of lean mass gained. None of the measures of energy expenditure significantly predicted increasing adiposity in white or black children.Conclusions. Initial fat mass was the dominant factor influencing increasing adiposity; however, aerobic fitness was also a significant independent predictor of increasing adiposity in this cohort of children. Resting, total, or activity-related energy expenditure did not predict increasing adiposity. It seems that aerobic fitness may be more important than absolute energy expenditure in the development of obesity in white or black children. Pediatrics 2000;106(4). URL: http://www. pediatrics.org/cgi/content/full/106/4/e50; energy expenditure, fitness, longitudinal, obesity.
HUANG, TERRY T.-K., MARIA S. JOHNSON, REINALDO FIGUEROA-COLON, JAMES H. DWYER, AND MICHAEL I. GORAN. Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes Res. 2001;9:283-289. Objective: To examine the patterns of growth of visceral fat, subcutaneous abdominal fat, and total body fat over a 3-to 5-year period in white and African American children. Research Methods and Procedures: Children (mean age: 8.1 Ϯ 1.6 years at baseline) were recruited from Birmingham, Alabama, and those with three or more repeated annual measurements were included in the analysis (N ϭ 138 children and 601 observations). Abdominal adipose tissue (visceral and subcutaneous) was measured using computed tomography. Total body fat and lean tissue mass were measured by DXA. Random growth curve modeling was performed to estimate growth rates of the different body fat compartments. Results: Visceral fat and total body fat both exhibited significant growth effects before and after adjusting for subcutaneous abdominal fat and lean tissue mass, respectively, and for gender, race, and baseline age (5.2 Ϯ 2.2 cm 2 /yr and 1.9 Ϯ 0.8 kg/yr, respectively). After adjusting for total body fat, the growth of subcutaneous abdominal fat was not significant. Whites showed a higher visceral fat growth than did African Americans (difference: 1.9 Ϯ 0.8 cm 2 /yr), but there was no ethnic difference for growth of subcutaneous abdominal fat or total body fat. There were no gender differences found for any of the growth rates. Discussion: Growth of visceral fat remained significant after adjusting for growth of subcutaneous abdominal fat, implying that the acquisition of the two abdominal fat compartments may involve different physiologic mechanisms. In contrast, growth of subcutaneous abdominal fat was explained by growth in total body fat, suggesting that subcutaneous fat may not be preferentially deposited in the abdominal area during this phase of growth. Finally, significantly higher growth of visceral fat in white compared with African American children is consistent with cross-sectional findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.