It was previously shown that fully grown ovarian germinal vesicle (GV) oocytes of adult mice exhibit several nuclear configurations that differ essentially by the presence or absence of a ring of condensed chromatin around the nucleolus. These configurations have been termed, respectively, SN (surrounded nucleolus) and NSN (nonsurrounded nucleolus). Work from our and other laboratories has revealed ultrastructural and functional differences between these two configurations. The aims of the present study were 1) to analyze the equilibrium between the SN and the NSN population as a function of the age of the mice and the time after hCG-induced ovulation and 2) to study the polymerase I (pol I)- and polymerase II (pol II)-dependent transcription in both types of oocytes through the detection of bromouridine incorporated into nascent RNA. We show 1) that ovarian GV oocytes exhibiting the SN-type configuration can be found as soon as 17 days after birth in the C57/CBA mouse strain and 2) that the SN:NSN ratio of ovarian GV oocytes is very low just after hCG-induced ovulation and then increases progressively with the time after ovulation. Furthermore, we demonstrate that the SN configuration correlates strictly with the arrest of both pol I- and pol II-dependent transcription in mice at any age. Finally, we show that ribosomal genes are located at the outer periphery of the nucleolus in the NSN configuration and that pol I-dependent perinucleolar transcription sites correspond to specific ultrastructural features of the nucleolus. Altogether, these results provide clear-cut criteria delineating transcriptionally active GV oocytes from those that are inactive, and confirm that the SN-type configuration is mostly present in preovulatory oocytes.
After labelling DNA with the specific vital fluorophore Hoechst 33342, oocytes, isolated by puncture from antral follicles in adult mice, have two essentially different configurations of their nuclear fluorescence images. These have been called SN (where the nucleolus is surrounded by chromatin) and NSN (where the nucleolus is not surrounded by chromatin). Intermediate configurations are also found, although with a lower frequency. The proportion of each class is on the average equal and depends neither on the presence of cumulus cells nor on the age of the mouse. Electron microscopy confirms several ultrastructural differences between these two nuclear configurations, namely, the structure of the nucleolus, which is vacuolated in NSN-type and compact in SN-type oocytes. Using video-enhanced fluorescence microscopy at low level of excitation light, we could follow directly in vitro the meiotic maturation of both classes, without impairing their viability. We show that in germinal vessicle (GV) state, the chromatin does not change from one configuration into the other and that both classes are able to mature to metaphase II, although the maturation has slightly different characteristics.
Using video-enhanced fluorescence microscopy, we describe in live mouse zygotes the paternal chromatin changes undergone after fertilization. We focus on the sperm recondensation process and the formation of the paternal pronucleus, in relationship with the progression of maternal chromatin. Chromatin is labeled with the vital fluorophore Hoechst 33342. Our conditions of dye concentration and irradiation allow a continuous following of the dynamics of changes without major perturbation. We combine these observations with ultrastructural analysis performed by electron microscopy of the same eggs fixed at chosen stages. We show that the highly recondensed state corresponds to the appearance of the nuclear envelope and therefore the beginning of the pronuclear stage.
Preovulatory mouse oocytes were cultured in vitro up to each subsequent stages of maturation: germinal vesicle (GV), germinal vesicle breakdown (GVBD), groups of not yet individualized bivalents, circular bivalents, late prometaphase I, metaphase I, anaphase I and telophase I. The stages were identified in living oocytes by fluorescence microscopy using Hoechst 33342 as a specific vital dye. Oocytes from each stage of development developed in vitro and ovulated metaphase II oocytes were subsequently cultured in the presence of puromycin or 6-dimethylaminopurine (6-DMAP), an inhibitor of protein phosphorylation. The effects on chromatin of these drugs were studied during and at the end of culture by fluorescence and electron microscopy. We found that puromycin and 6-DMAP stop meiosis when applied at all stages of oocyte maturation, except for metaphase II. Oocytes at this stage are activated by puromycin. Reaction of the oocytes to the two drugs is different at GV and at metaphase II. All of the other stages react to the drugs by chromatin compaction, which can be followed by chromatin decondensation to form a nucleus. Our results suggest that late prophase chromatin condensation, bivalent individualization and retention of their individuality, as well as individualization of monovalents from telophase and retention of their individuality at metaphase II, are dependent on protein phosphorylation. The events occurring between metaphase I and telophase I are independent of protein synthesis and phosphorylation. The events occurring between metaphase II and formation of the nucleus are independent of protein synthesis.
The ultrastructure of oocyte and sperm nuclei was studied in mouse ovarian oocytes inseminated in vitro and cultured for 1 1/2 and 3 h in a medium containing dbcAMP or lacking the maturation inhibitor. In oocytes blocked at the germinal vesicle (GV) stage, certain maturation-linked changes were noted. Sperm apposition and sperm-oocyte fusion were similar to that during fertilization of ovulated oocytes. The sperm nucleus and its nuclear envelope remained intact after penetrating into the ovarian oocyte. One and a half h after removal of the drug (time 0 of maturation) the germinal vesicle (GV) and sperm nucleus remained intact. In oocytes maturing for 3 h, the nuclear envelopes of the GV and sperm nucleus had fragmented. The NE of the oocyte formed quadruple membranes while the NE of the sperm remained as flat vesicles. Oocyte chromatin condensed to form chromosomes, whereas at the same time the sperm chromatin was in the process of decondensation and was surrounded by fragments of the sperm NE. The sperm chromatin, composed of DNA complexed with protamines, consisted of thin fibrils; the individual fibrils measured 3.8 nm in diameter. Near the penetrated spermatozoa only occasional Mts were detected which were not related to the proximal centriole which was recognizable in the neck-piece of the flagellum. Thus in mouse oocytes the introduced sperm centriole is not capable of behaving as a centrosome and organizing microtubules in the form of an aster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.