Small mammals are known to carry Campylobacter spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010–2017, and in close proximity to 40 pig or cattle farms in 2017. The animals were trapped using traditional Finnish metal snap traps. Campylobacter spp. were isolated from the intestinal content using direct plating on mCCDA. A total of 19% of the captured wild animals (n = 577) and 41% of the pooled farm samples (n = 227) were positive for C. jejuni, which was the only Campylobacter species identified. The highest prevalence occurred in yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) which carried Campylobacter spp. in 66.3 and 63.9% of the farm samples and 41.5 and 24.4% of individual animals trapped from natural habitats, respectively. Interestingly, all house mouse (Mus musculus) and shrew (Sorex spp.) samples were negative for Campylobacter spp. C. jejuni isolates (n = 145) were further characterized by whole-genome sequencing. Core genome multilocus sequence typing (cgMLST) clustering showed that mouse and vole strains were separated from the rest of the C. jejuni population (636 and 671 allelic differences, 94 and 99% of core loci, respectively). Very little or no alleles were shared with C. jejuni genomes described earlier from livestock or human isolates. FastANI results further indicated that C. jejuni strains from voles are likely to represent a new previously undescribed species or subspecies of Campylobacter. Core-genome phylogeny showed that there was no difference between isolates originating from the farm and wild captured animals. Instead, the phylogeny followed the host species-association. There was some evidence (one strain each) of livestock-associated C. jejuni occurring in a farm-caught A. flavicollis and a brown rat (Rattus norvegicus), indicating that although small mammals may not be the original reservoir of Campylobacter colonizing livestock, they may sporadically carry C. jejuni strains occurring mainly in livestock and be associated with disease in humans.
To promote public health, Finland has adopted a stringent Salmonella control policy. However, the rationale of Salmonella control in pig feeds has been debated after a European Union (EU)-wide cost–benefit analysis, which provided mixed, country-specific results on whether control measures are economically beneficial. The aim of this study was to analyze the costs and benefits of current pig feed Salmonella control in Finland compared to a reduced control scenario. In addition, this study contributes to the literature by looking at the costs across stakeholder groups. The costs of preventive and monitoring measures were assessed, and a Monte Carlo model was developed to simulate costs caused by Salmonella contaminations along the pork supply chain (including feed importation, commercial feed manufacturing, feed transportation, mobile feed mixers, pig farms, slaughterhouses) and because of human salmonellosis originating from contaminated feed. The data were collected from official records and feed sector operators by surveys and interviews. The prevalence of Salmonella was obtained from a previously conducted risk assessment study. The total costs of pig feed Salmonella control were estimated on average to be €4.2–5.4 million per year (95% of simulated years between €2.1 and €9.1 million) for the current control scenario, and €33.8–34.8 million per year (95% €2.2 to €26.0 million) for the reduced control scenario. In the reduced control scenario, the monitoring and prevention costs were decreased down to €1.1–2.1 million, and the costs of Salmonella contaminations and human salmonellosis were up by €32.7 million when compared to the current control scenario. The results suggest that the current pig feed Salmonella control policy of Finland is economically profitable. It can reduce the costs caused by feed-related Salmonella contaminations on average by €29.4 million per year and provides public health benefits. Pig feed Salmonella control can support the effectiveness of the Finnish Salmonella Control Programme. The current pig feed Salmonella control policy benefits the consumers, while a substantial part of the costs are covered by feed operators. In order to increase the acceptability of current policy, greater attention to the allocation of financial responsibilities regarding the control measures may be required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.