Background-The effect of β-blockers on infarct size when used in conjunction with primary percutaneous coronary intervention is unknown. We hypothesize that metoprolol reduces infarct size when administered early (intravenously before reperfusion). Methods and Results-Patients with Killip class II or less anterior ST-segment-elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention within 6 hours of symptoms onset were randomized to receive intravenous metoprolol (n=131) or not (control, n=139) before reperfusion. All patients without contraindications received oral metoprolol within 24 hours. The predefined primary end point was infarct size on magnetic resonance imaging performed 5 to 7 days after STEMI. Magnetic resonance imaging was performed in 220 patients (81%). Mean±SD infarct size by magnetic resonance imaging was smaller after intravenous metoprolol compared with control (25.6±15.3 versus 32.0±22.2 g; adjusted difference, −6.52; 95% confidence interval, −11.39 to −1.78; P=0.012). In patients with pre-percutaneous coronary intervention Thrombolysis in Myocardial Infarction grade 0 to 1 flow, the adjusted treatment difference in infarct size was −8.13 (95% confidence interval, −13.10 to −3.16; P=0.0024). Infarct size estimated by peak and area under the curve creatine kinase release was measured in all study populations and was significantly reduced by intravenous metoprolol. Left ventricular ejection fraction was higher in the intravenous metoprolol group (adjusted difference, 2.67%; 95% confidence interval, 0.09-5.21; P=0.045). The composite of death, malignant ventricular arrhythmia, cardiogenic shock, atrioventricular block, and reinfarction at 24 hours in the intravenous metoprolol and control groups was 7.1% and 12.3%, respectively (P=0.21). Conclusions-In patients with anterior Killip class II or less ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention, early intravenous metoprolol before reperfusion reduced infarct size and increased left ventricular ejection fraction with no excess of adverse events during the first 24 hours after STEMI.
The conversion of processed discarded material into valuable by‐products and alternative specialty materials has been identified as a timely challenge for food research and development associated with numerous applications of chitinous products. Chitin, chitosan, calcareous chitin, and chitosan, N‐acetylated chitosan, N‐methylene phosphonic chitosan (NMPC), and N‐lauryl‐N‐methylene phosphonic chitosan (LMPC) are being studied as a result of their broad range of food applications. These biopolymers offer a wide range of unique applications including formation of biodegradable films, immobilization of enzymes, preservation of foods from microbial deterioration, as additives (clarification and deacidification of fruits and beverages, emulsifier agents, thickening and stabilizing agents, color stabilization), and dietary supplements. This review summarizes some of the most important developments in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.