Identification of molecular mechanisms involved in generation of different types of adipocytes is progressing substantially in mice. However, much less is known regarding characterization of brown (BAP) and white adipocyte progenitors (WAPs) in humans, highlighting the need for an in vitro model of human adipocyte development. Here, we report a procedure to selectively derive BAP and WAPs from human-induced pluripotent stem cells. Molecular characterization of APs of both phenotypes revealed that BMP4, Hox8, Hoxc9, and HoxA5 genes were specifically expressed in WAPs, whereas expression of PRDM16, Dio2, and Pax3 marked BAPs. We focused on Pax3 and we showed that expression of this transcription factor was enriched in human perirenal white adipose tissue samples expressing UCP1 and in human classical brown fat. Finally, functional experiments indicated that Pax3 was a critical player of human AP fate as its ectopic expression led to convert WAPs into brown-like APs. Together, these data support a model in which Pax3 is a new marker of human BAPs and a molecular mediator of their fate. The findings of this study could lead to new anti-obesity therapies based on the recruitment of APs and constitute a platform for investigating in vitro the developmental origins of human white and brown adipocytes.
Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtypespecific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
Objective: To characterize brown adipose tissue (BAT) in the human perirenal adipose tissue depot. Method: Perirenal adipose tissue biopsies were obtained from 55 healthy kidney donors. Expression analysis was performed using microarray, real-time PCR, immunoblotting and immunohistochemistry. Additional studies using human stem cells were performed. Results: UCP1 gene expression analysis revealed a large intra-individual variation in the perirenal adipose tissue biopsies. Both multi-and unilocular UCP1-positive adipocytes were detected in several of the adipose tissue samples analyzed by immunohistochemical staining. Microarray analysis identified 54 genes that were overexpressed in UCP1-positive perirenal adipose tissue. Real-time PCR analysis of BAT candidate genes revealed a set of genes that were highly correlated to UCP1 and a set of three transcription factor genes (PRDM16, PGC1a, and RXRc) that were highly correlated to each other. RXRc displayed nuclear immunoreactivity in brown adipocytes and an increased gene expression during brown adipogenesis in human stem cells. Conclusion: Our data provides the first molecular characterization of BAT in the perirenal adipose tissue depot. Furthermore, it highlights the transcription factor RXRc as a new player in BAT development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.