The mouse Y chromosome carries 10 distinct genes or gene families that have open reading frames suggestive of retained functionality; it has been assumed that many of these function in spermatogenesis. However, we have recently shown that only two Y genes, the testis determinant Sry and the translation initiation factor Eif2s3y, are essential for spermatogenesis to proceed to the round spermatid stage. Thus, any further substantive mouse Y-gene functions in spermatogenesis are likely to be during sperm differentiation. The complex Ssty gene family present on the mouse Y long arm (Yq) has been implicated in sperm development, with partial Yq deletions that reduce Ssty expression resulting in impaired fertilization efficiency. Here we report the identification of a more extensive Yq deletion that abolishes Ssty expression and results in severe sperm defects and sterility. This result establishes that genetic information (Ssty?) essential for normal sperm differentiation and function is present on mouse Yq.
Outbred XYSry- female mice that lack Sry due to the 11 kb deletion Srydl1Rlb have very limited fertility. However, five lines of outbred XYd females with Y chromosome deletions YDel(Y)1Ct-YDel(Y)5Ct that deplete the Rbmy gene cluster and repress Sry transcription were found to be of good fertility. Here we tested our expectation that the difference in fertility between XO, XYd-1 and XYSry- females would be reflected in different degrees of oocyte depletion, but this was not the case. Transgenic addition of Yp genes to XO females implicated Zfy2 as being responsible for the deleterious Y chromosomal effect on fertility. Zfy2 transcript levels were reduced in ovaries of XYd-1 compared with XYSry- females in keeping with their differing fertility. In seeking the biological basis of the impaired fertility we found that XYSry-, XYd-1 and XO,Zfy2 females produce equivalent numbers of 2-cell embryos. However, in XYSry- and XO,Zfy2 females the majority of embryos arrested with 2-4 cells and almost no blastocysts were produced; by contrast, XYd-1 females produced substantially more blastocysts but fewer than XO controls. As previously documented for C57BL/6 inbred XY females, outbred XYSry- and XO,Zfy2 females showed frequent failure of the second meiotic division, although this did not prevent the first cleavage. Oocyte transcriptome analysis revealed major transcriptional changes resulting from the Zfy2 transgene addition. We conclude that Zfy2-induced transcriptional changes in oocytes are sufficient to explain the more severe fertility impairment of XY as compared with XO females.
The Yd1 deletion in mice removes most of the multi-copy Rbmy gene cluster that is located adjacent to the centromere on the Y short arm (Yp). XYd1 mice develop as females because Sry is inactivated, probably because it is now juxtaposed to centromeric heterochromatin. We have previously produced XYd1Sry transgenic males and found that they have a substantially increased frequency of abnormal sperm. Staining of testis sections with a polyclonal anti-RBMY antibody appeared to show a marked decrease of RBMY protein in the spermatids of XYd1Sry males compared to control males, which led us to suggest that this may be responsible for the increase in sperm anomalies. In the current study we sought to determine whether augmenting Rbmy expression specifically in the spermatids of XYd1Sry males would ameliorate the sperm defects. An expressing Rbmy transgene driven by the spermatid-specific mouse protamine 1 promotor (mP1Rbmy) was therefore introduced into XYd1Sry males. This failed to reduce the frequency of abnormal sperm. In the course of this study, a new RBMY antibody was generated that, in contrast to the original antibody, failed to detect RBMY in spermatid stages by immunostaining. The lack of RBMY was confirmed by western blotting of lysates from purified round spermatids and elongating spermatids. The implications of these results for the proposed role for RBMY in sperm development are discussed.
The mouse Y chromosome carries 10 distinct genes or gene families that have open reading frames suggestive of retained functionality; it has been assumed that many of these function in spermatogenesis. However, we have recently shown that only two Y genes, the testis determinant Sry and the translation initiation factor Eif2s3y, are essential for spermatogenesis to proceed to the round spermatid stage. Thus, any further substantive mouse Y-gene functions in spermatogenesis are likely to be during sperm differentiation. The complex Ssty gene family present on the mouse Y long arm (Yq) has been implicated in sperm development, with partial Yq deletions that reduce Ssty expression resulting in impaired fertilization efficiency. Here we report the identification of a more extensive Yq deletion that abolishes Ssty expression and results in severe sperm defects and sterility. This result establishes that genetic information (Ssty?) essential for normal sperm differentiation and function is present on mouse Yq.
Protein phosphatase 2A (PP2A) is a critical serine/threonine phosphatase involved in the control of multiple cellular functions. Distinct regulatory subunits of this holoenzyme govern its intracellular localisation and substrate specificity. The regulatory B subunits target PP2A to the substrate. The B56δ subunit encoded by Pp2r5d is expressed in different tissues including testis. Its genomic structure shows a 3′ end region of 114 bp in reverse orientation complementary to the 3′ region of Mea1. In mouse seminiferous epithelium Mea1 is highly expressed in pachytene spermatocytes through to spermatid cells, while Pp2r5d shows under-expression. The potential co-regulation of both these genes was analysed. However, no potential transcriptional or post-transcriptional interference between them could be fully defined. A previously unreported subunit with testis-specific expression, B56γ-4, was characterised. This new subunit of the B56 family has no genomic structure related to Mea1, and might replace the functions of B56δ if B56δ expression were compromised by high expression of Mea1 during spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.