Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg(-1)), Bi (1.64 mg kg(-1)), Cd (1.44 mg kg(-1)), Cu (115 mg kg(-1)), Pb (210 mg kg(-1)), Sb (13.8 mg kg(-1)), Tl (1.17 mg kg(-1)) and Zn (457 mg kg(-1)). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg(-1) respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites.
Background and Aims. Soil factors are driving forces that influence spatial distribution and functional traits of plant species. We test whether two anchor morphological traitsleaf mass per area (LMA) and leaf dry matter content (LDMC)-are significantly related to a broad range of leaf nutrient concentrations in Mediterranean woody plant species. We also explore the main environmental filters (light availability, soil moisture and soil nutrients) that determine the patterns of these functional traits in a forest stand. Methods. Four morphological and 19 chemical leaf traits (macronutrients and trace elements and δ 13 C and δ 15 N signatures) were analysed in 17 woody plant species. Community-weighted leaf traits were calculated for 57 plots within the forest. Links between LMA, LDMC and other leaf traits were analysed at the species and the community level using standardised major axis (SMA) regressions. Results. LMA and LDMC were significantly related to many leaf nutrient concentrations, but only when using abundance-weighted values at community level. Among-traits links were much weaker for the cross-species analysis. Nitrogen isotopic signatures were useful to understand different resource-use strategies. Communityweighted LMA and LDMC were negatively related to light availability, contrary to what was expected. Conclusion. Community leaf traits have parallel shifts along the environmental factors that determine the community assembly, even though they are weakly related across individual taxa. Light availability is the main environmental factor determining this convergence of the community leaf traits.
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.