Over the oceans, approximately 90% of net radiation produces evaporation (Budyko, 1974), primarily in the tropics. Over continents, net radiation heats the surface, evaporates water from water bodies or moist soils, or provides plants with energy to remove water from soils (Pitman, 2003; Istanbulluoglu and Bras, ANALYSISAt the watershed scale, soil moisture is the major control for rainfall-runoff response, especially where saturation excess runoff processes dominate. From the ecological point of view, the pools of soil moisture are fundamental ecosystem resources providing the transpirable water for plants. In drylands particularly, soil moisture is one of the major controls on the structure, function, and diversity in ecosystems. In terms of the global hydrological cycle, the overall quantity of soil moisture is small, ∼0.05%; however, its importance to the global energy balance and the distribution of precipitation far outweighs its physical amount. In soils it governs microbial activity that aff ects important biogeochemical processes such as nitrifi cation and CO 2 production via respiration. During the past 20 years, technology has advanced considerably, with the development of diff erent electrical sensors for determining soil moisture at a point. However, modeling of watersheds requires areal averages. As a result, point measurements and modeling grid cell data requirements are generally incommensurate. We review advances in sensor technology, particularly emerging geophysical methods and distributed sensors, aimed at bridging this gap. We consider some of the data analysis methods for upscaling from a point to give an areal average. Finally, we conclude by off ering a vision for future research, listing many of the current scientifi c and technical challenges.
constant) of a material emerged as an elegant method of estimating water content in porous materials. For the Substantial advances in the measurement of water content and first time the same physical property (permittivity) could bulk soil electrical conductivity (EC) using time domain reflectometry be measured for a range of scales and used to estimate (TDR) have been made in the last two decades. The key to TDR's success is its ability to accurately measure the permittivity of a material water content. Electromagnetic methods, whether TDR and the fact that there is a good relationship between the permittivity (localized measurement), ground penetrating radar of a material and its water content. A further advantage is the ability (two-dimensional profile), or active microwave remote to estimate water content and measure bulk soil EC simultaneously sensing (land surface), all estimate water content based using TDR. The aim of this review is to summarize and examine on the permittivity of the target medium. A further advances that have been made in terms of measuring permittivity and advance was the development of analysis methods using bulk EC. The review examines issues such as the effective frequency TDR. Time domain reflectometry was adapted to estiof the TDR measurement and waveform analysis in dispersive dielecmate both soil water content (Hoekstra and Delaney, trics. The growing importance of both waveform simulation and in-1974; Topp et al., 1980) and soil bulk EC simultaneously verse analysis of waveforms is highlighted. Such methods hold great (Dalton et al., 1984). In spite of decades of research, potential for obtaining far more information from TDR waveform analysis. Probe design is considered in some detail and practical guid-we are only beginning to efficiently utilize electrical ance is given for probe construction. The importance of TDR measuretechnology that ranges from satellite and airborne radar ment sampling volume is considered and the relative energy storage to ground penetrating radar and localized sensors such density is modeled for a range of probe designs. Tables are provided as TDR and impedance probes. that compare some of the different aspects of commercial TDR equip-The underlying success of these techniques can be ment, and the units are discussed in terms of their performance and considered in two parts, the first of which is the equiptheir advantages and disadvantages. It is hoped that the review will ment's ability to accurately measure the bulk dielectric provide an informative guide to the more technical aspects of permitpermittivity and EC of a material. The second is the close tivity and EC measurement using TDR for the novice and expert alike.relationship between the measured permittivity and the volumetric water content, or the ionic concentration and the bulk EC of the material. This review concentrates
The authors examined the influence of talking and the social context of talking on cognitive-emotional processes of adjustment to stressors. Two hundred fifty-six undergraduates viewed a stressful stimulus and were then assigned to a no-talk control condition or 1 of 3 talk conditions: talk alone, talk to a validating confederate, or talk to an invalidating confederate. Two days later, they were reexposed to the stressor. Compared with individuals in the no-talk condition, those in the talk alone and validate conditions had a lower level of intrusive thoughts in the 2-day interim, and they had lower perceived stress when reexposed to the stressor. The effects of talking and validation on perceived stress appeared to be mediated by lowered intrusions. The benefits of talking were diluted when disclosures were invalidated. These findings suggest that talking about acute stressors can facilitate adjustment to stressors through cognitive resolution.A timely utterance gave that thought relief, and I again am strong ---William Wordsworth, "Ode: Intimations of Immortality from Recollections of Early Childhood" Poets, laypersons, and psychologists alike believe that there are benefits of talking about negative emotional experiences. There is a strong tendency for people to talk about aversive events (Rime, 1995), and disclosure of stressful experiences is the cornerstone of many psychotherapeutic interventions (Stiles, 1995). Empirical evidence suggests that "opening up" and expressing stress-related thoughts and feelings is associated with improved physical and mental health (
An increasing number of electromagnetic (EM) sensors are deployed to measure volumetric soil water content (θ) for agricultural, ecological, and geotechnical applications. While impedance and capacitance sensors generally operate at frequencies between 20–300 MHz, time domain‐reflectometry (TDR) and‐transmissometry (TDT) function in the GHz range. In general, lower frequency sensors are less expensive but more sensitive to confounding effects of salinity, temperature, and soil textural variations. To simplify sensor application, factory‐supplied calibrations are often provided for different porous media types such as mineral, organic, and saline soils, or soilless‐substrates. The objective of the presented study was to evaluate the performance of eight commercially available EM moisture sensing systems (TDR 100, CS616, Theta Probe, Hydra Probe, SM300, Wet2, 5TE, 10HS) in seven well‐characterized and texturally varying soils using a standardized approach. The validity of factory supplied‐calibration relationships was evaluated and the influence of soil properties on the EM responses for θ measurements was observed. Results indicate that the factory‐supplied calibration relationships for groups of mineral and organic soils in general performed well, but some inconsistences were identified and suggestions for improvement are discussed. Soil‐specific calibrations from this study yielded accuracies of around 0.015 m3m−3 for 10HS, SM300, and Theta Probe, while lower accuracies of about 0.025 m3 m−3 were found for TDR100, CS616, Wet2, 5TE, and the Hydra Probe. These results are based on mineral soils having a large variation in texture, electrical conductivities below 2 dS m−1, organic matter below 10%, and specific surface areas of less than 50 m2 g−1.
Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.