Despite the frequent detection of circulating tumor antigen–specific T cells, either spontaneously or following active immunization or adoptive transfer, immune-mediated cancer regression occurs only in the minority of patients. One theoretical rate-limiting step is whether effector T cells successfully migrate into metastatic tumor sites. Affymetrix gene expression profiling done on a series of metastatic melanoma biopsies revealed a major segregation of samples based on the presence or absence of T-cell-associated transcripts. The presence of lymphocytes correlated with the expression of defined chemokine genes. A subset of six chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) was confirmed by protein array and/or quantitative reverse transcription-PCR to be preferentially expressed in tumors that contained T cells. Corresponding chemokine receptors were found to be up-regulated on human CD8+ effector T cells, and transwell migration assays confirmed the ability of each of these chemokines to promote migration of CD8+ effector cells in vitro. Screening by chemokine protein array identified a subset of melanoma cell lines that produced a similar broad array of chemokines. These melanoma cells more effectively recruited human CD8+ effector T cells when implanted as xenografts in nonobese diabetic/severe combined immunodeficient mice in vivo. Chemokine blockade with specific antibodies inhibited migration of CD8+ T cells. Our results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of antitumor immunity.
To explore the molecular mechanisms for the similarities between inherited and noninherited forms of breast cancer, we tested the hypothesis that inactivation of BRCA1 by promoter hypermethylation is associated with reduced gene copy number and chromosome 17 aneusomy as observed in tumors from BRCA1 mutation carriers. Using a combination of methylation-specific PCR analysis and fluorescence in situ hybridization, we observed varying degrees of promoter methylation in 39 of 131 (29.8%) primary tumors. Despite significant tumor heterogeneity, mean copy numbers of BRCA1 and CEP17 per cell were lower in methylated cases compared with unmethylated cases [1.78 versus 2.30 (P = 0.001) and 1.85 versus 2.29 (P = 0.005), respectively]. Methylation was more frequently observed in younger women (P = 0.05) with high-grade (P = 0.001), estrogen receptornegative (P = 0.04), and progesterone receptor-negative (P = 0.01) tumors. Moreover, methylation was associated with reduced or absent BRCA1 transcripts, which was reversible in the heavily BRCA1-methylated cell line UACC3199 following treatment with 5-aza-2V-deoxycytidine and trichostatin A. We identified five CpGs at positions À533, À355, À173, À21, and +44 as critical in the reexpression of BRCA1. We conclude that BRCA1 methylation contributes to a subset of sporadic breast cancers with the resulting molecular and clinicopathologic phenotype similar to that of hereditary BRCA1-associated breast cancers. Our data support a model of carcinogenesis in which BRCA1 promoter methylation may serve as a ''first hit,'' much like an inherited germ line mutation, and promote tumor progression down a restricted set of molecular pathways. (Cancer Res 2005; 65(23): 10692-9)
Oncomir-1 is an oncogenic cluster of microRNAs (miRNA) located on chromosome 13. Previous in vitro studies showed that it is transcriptionally regulated by the transcription factor E2F3. In this report, we combine expression profiling of both mRNA and miRNAs in Wilms' tumor (WT) samples to provide the first evidence that the E2F3-Oncomir-1 axis, previously identified in cell culture, is deregulated in primary human tumors. Analysis of RNA expression signatures showed that an E2F3 gene signature was activated in all WT samples analyzed, in contrast to other kidney tumors. This finding was validated by immunohistochemistry on the protein level. Expression of E2F3 was lowest in early-stage tumors and highest in metastatic tissue. Expression profiling of miRNAs in WT showed that expression of each measured member of the Oncomir-1 family was highest in WT relative to other kidney tumor subtypes. Quantitative PCR confirmed that these miRNAs were overexpressed in WT relative to normal kidney tissue. These results suggest that the E2F3-Oncomir-1 axis is activated in WT. Our study also shows the utility of integrated genomics combining gene signature analysis with miRNA expression profiling to identify protein-miRNA interactions that are perturbed in disease states. [Cancer Res 2008;68(11):4034-8]
Background: There is a strong interest in identifying chemopreventive agents that might help decrease the burden of lung cancer. The active metabolite of vitamin D, 1,25-dihydroxycholecalciferol (calcitriol), has been shown to have antiproliferative effects in several tumor types, mediated by the vitamin D receptor (VDR). This is the first comprehensive survey of VDR expression in a series of human lung tissues, including normal and premalignant central airway biopsies and lung tumors.
Colonic carcinogenesis involves the progressive dysregulation of homeostatic mechanisms that control growth. The epidermal growth factor (EGF) receptor (EGFR) regulates colonocyte growth and differentiation and is overexpressed in many human colon cancers. A requirement for EGFR in colonic premalignancy, however, has not been shown. In the current study, we used a specific EGFR antagonist, gefitinib, to investigate this role of the receptor in azoxymethane colonic premalignancy. The azoxymethane model shares many clinical, histologic, and molecular features of human colon cancer. Mice received azoxymethane i.p. (5 mg/kg/wk) or saline for 6 weeks. Animals were also gavaged with gefitinib (10 mg/kg body weight) or vehicle (DMSO) thrice weekly for 18 weeks, a dose schedule that inhibited normal receptor activation by exogenous EGF. Compared with control colonocytes [bromodeoxyuridine (BrdUrd), 2.2 F 1.2%], azoxymethane significantly increased proliferation (BrdUrd, 12.6 F 2.8%), whereas gefitinib inhibited this hyperproliferation (BrdUrd, 6.2 F 4.0%; <0.005). Azoxymethane significantly induced pro-transforming growth factor-A (6.4 F 1.3-fold) and increased phospho-(active) EGFR (5.9 F 1.1-fold), phospho-(active) ErbB2 (2.3 F 0.2-fold), and phospho-(active) extracellular signal-regulated kinase (3.3 F 0.4-fold) in premalignant colonocytes. Gefitinib inhibited activations of these kinases by >75% (P < 0.05). Gefitinib also significantly reduced the number of large aberrant crypt foci and decreased the incidence of colonic microadenomas from 75% to 33% (P < 0.05). Gefitinib concomitantly decreased cell cycle-regulating cyclin D1 and prostanoid biosynthetic enzyme cyclooxygenase-2 in microadenomas, suggesting that these regulators are key targets of EGFR in colonic carcinogenesis. These results show for the first time that EGFR signaling is required for early stages of colonic carcinogenesis. Our findings suggest, moreover, that inhibitors of EGFR might be useful in chemopreventive strategies in individuals at increased risk for colonic malignancies. [Cancer Res 2007;67(2):827-35]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.