In this paper, the resistance to the freeze/thaw cycles for four groups of mortars (lime—LM, lime based—LBM, cement—CM, and aerated cement—ACM mortars) with different amount of mortar components within each group is quantified via a ratio of flexural/compressive strength after and before exposure to freeze/thaw cycles. Using a pore system obtained by three different methods (mercury intrusion porosimetry, X-ray micro-computed tomography analysis, and SEM (Scanning Electron Microscopy) analysis), an attempt was made to explain why some mortars achieved better resistance to freeze/thaw cycles than others. The mortars with lime as a binder in the composition (LM and LBM groups) did not survive the freezing and thawing regime, while no visible damage was recorded in samples of the CM and ACM group. It is concluded that the low initial value of the mechanical properties of the LM and LBM mortars, as well as the higher proportion of harmful pores (pores greater than 0.064 μm) compared to CM and ACM mortars are responsible for their poor durability. According the results of nanotomography, it is concluded that the most important factor influencing freeze/thaw resistance is pore connectivity—the higher the connectivity of the macropores, the higher the freeze/thaw resistance of the mortar. SEM analysis proved to be a very useful method for aerated cement mortars as it revealed the pore sizes that were not covered by mercury porosimetry and nanotomography.
The article presents the results of studies concerning raw hemp shives obtained from the Polish crop of industrial hemp as a loose-fill thermal insulation material. The study focuses mainly on the measurements of the pore size distribution, thermal conductivity and air permeability of material. An increase in the value of the thermal conductivity coefficient (0.049–0.052 W/(m∙K)) was demonstrated with an increase in the bulk density. The porosity of the individual pieces of shives is 78.7% and the predominant number of pores is in the diameter range of 0.9–3 μm. The paper also presents an example of the use of the tested material as thermal insulation of the wooden frame wall. The heat flow analysis was performed in various wall variants (insulation thickness: 100, 200 and 300 mm and pressure difference 0, 5, 10 and 15 Pa). A clear influence of the variables on the temperature distribution was observed.
This paper deals with the hygric characterization of early 20th century machine-made clay bricks, representative of great number of historical buildings in north-eastern Poland. Heritage buildings have a high potential for adaptive reuse, which is strictly connected with an urge for knowledge about the properties of these existing building envelopes. To better understand the hygric behavior of historic buildings, various experimental laboratory tests, including density, water absorption, compressive strength and freeze-thaw resistance, were conducted. In order to assess the microstructural characteristics of the tested bricks, mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (micro-CT) tests were performed. These tests were conducted on clay bricks from historic buildings, as well as on those that are currently being produced, in order to identify the relationship between the materials used in the past and the replacements produced presently. This paper addresses the lack of systematic application of existing standards for evaluating the state of the conservation of historic bricks and for establishing the specifications for replacement bricks. The results of conducted study and further research will be the basis for creating a historic materials database. It would be a useful tool for selecting bricks that correspond with the historically used materials and help to maintain homogenous structure of the restored buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.