The present study explored the effect of light intensity and spectral variation of the actinic light on the hydrophilic conversion of the surface of ZnO nanocoatings. The dependence on light intensity indicates that both formation and destruction of the surface hydrophilic states occurs in parallel. The proposed kinetic mechanism corresponds well with experimental dependences. The spectral dependence of the photoinduced hydrophilic conversion of the ZnO surface suggests the important role of electronic photoexcitation of the solid. Similarity between the spectral distributions of the efficiency of photoinduced hydrophilic conversion and the ratio between the surface concentrations of electrons and holes (estimated on the basis of the ratio between quantum yields of oxygen and methane photostimulated adsorption) infers that the reason for the hydrophilicity alteration is the surface charge redistribution caused by actinic light.
In recent years many works are aimed at finding a method of controllable switching between hydrophilicity and hydrophobicity of a surface. The hydrophilic surface state is generally determined by its energy. Change in the surface energy can be realized in several different ways. Here we report the ability to control the surface wettability of zirconium dioxide nano-coatings by changing the composition of actinic light. Such unique photoinduced hydrophilic behavior of ZrO2 surface is ascribed to the formation of different active surface states under photoexcitation in intrinsic and extrinsic ZrO2 absorption regions. The sequential effect of different actinic lights on the surface hydrophilicity of zirconia is found to be repeatable and reversibly switchable from a highly hydrophilic state to a more hydrophobic state. The observed light-controllable reversible and reproducible switching of hydrophilicity opens new possible ways for the application of ZrO2 based materials.
The effect of a Cu2O substrate on the photoinduced alteration of the hydrophilicity of TiO2 and ZnO surfaces was studied. It was demonstrated that the formation of heterostructures Cu2O/TiO2 and Cu2O/ZnO strongly changed the direction of the photoinduced alteration of surface hydrophilicity: while both TiO2 and ZnO demonstrate surface transition to superhydrophilic state under UV irradiation and no significant alteration of the surface hydrophilicity under visible light irradiation, the formation of Cu2O/TiO2 and Cu2O/ZnO heterostructures resulted in photoinduced decay of the surface hydrophilicity caused by both UV and visible light irradiation. All observed photoinduced changes of the surface hydrophilicity were compared and analyzed in terms of photoinduced alteration of the surface free energy and its polar and dispersive components. Alteration of the photoinduced hydrophilic behavior of TiO2 and ZnO surfaces caused by formation of the corresponding heterostructures with Cu2O are explained within the mechanism of electron transfer and increasing of the electron concentration on the TiO2 and ZnO surfaces.
Variable-temperature FTIR spectra of CO adsorbed on NaCl and KBr films are shown to reveal linkage isomerism, that is, formation of C- and O-bonded adsorption complexes with the same cationic sites. Not all of the sites can be involved in that, only the three- or four-coordinated cations located on kinks, edges, or steps of microcrystals. For NaCl, these adsorption complexes account for the high-frequency (HF) C-O stretching bands at 2175 and 2160 cm(-1). Coresponding LF bands of O-bonded CO were found at 2115 and 2124 cm(-1). In the spectrum of KBr, the HF band is poorly resolved, and only one LF band can be clearly seen, near 2124 cm(-1). The value of the isomerization enthalpy for complexes that account for the bands at 2160 and 2124 cm(-1) of CO adsorbed on NaCl, estimated from the experiment, is 4.0 ± 0.2 kJ/mol. Quantum mechanical calculations by DFT methods applied to NaCl model clusters interacting with the CO molecule confirm the existence of two potential wells with adsorption and isomerization energies close to the experimentally measured values, and enable us to estimate the height of the potential barrier between the two adsorption states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.