This paper describes the development of statistical classifiers to help diagnose meningococcal meningitis, i.e. the most sever, infectious and deadliest type of this disease. The goal is to find a mechanism able to determine whether a patient has this type of meningitis from a set of symptoms that can be directly observed in the earliest stages of this pathology. Currently, in Brazil, a country that is heavily affected by meningitis, all suspected cases require immediate hospitalization and the beginning of a treatment with invasive tests and medicines. This procedure, therefore, entails expensive treatments unaffordable in less developed regions. For this purpose, we have gathered together a dataset of 22,602 records of suspected meningitis cases from the Brazilian state of Bahia. Seven classification techniques have been applied from input data of nine symptoms and other information about the patient such as age, sex and the area they live in, and a 10 cross-fold validation has been performed. Results show that the techniques applied are suitable for diagnosing the meningococcal meningitis. Several indexes, such as precision, recall or ROC area, have been computed to show the accuracy of the models. All of them provide good results, but the best corresponds to the J48 classifier with a precision of 0.942 and a ROC area over 0.95. These results indicate that our model can indeed help lead to a non-invasive and early diagnosis of this pathology. This is especially useful in less developed areas, where the epidemiologic risk is usually high and medical expenses, sometimes, unaffordable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.