Germanium is emerging as the substrate of choice for the growth of graphene in CMOS-compatible processes. For future application in next generation devices the accurate control over the properties of high-quality graphene synthesized on Ge surfaces, such as number of layers and domain size, is of paramount importance. Here we investigate the role of the process gas flows on the CVD growth of graphene on Ge(100). The quality and morphology of the deposited material is assessed by using μ-Raman spectroscopy, X-ray photoemission spectroscopy, scanning electron microscopy, and atomic force microscopy. We find that by simply varying the carbon precursor flow different growth regimes yielding to graphene nanoribbons, graphene monolayer, and graphene multilayer are established. We identify the growth conditions yielding to a layer-by-layer growth regime and report on the achievement of homogeneous monolayer graphene with an average intensity ratio of 2D and G bands in the Raman map larger than 3.
We report the growth of InAs/InAs(1-x)Sb(x) single and double heterostructured nanowires by Au-assisted chemical beam epitaxy. The InAs(1-x)Sb(x) nanowire segments have been characterized in a wide range of antimony compositions. Significant lateral growth is observed at intermediate compositions (x ~ 0.5), and the nucleation and step-flow mechanism leading to this lateral growth has been identified and described. Additionally, CuPt ordering of the alloy has been observed with high resolution transmission electron microscopy, and it is correlated to the lateral growth process. We also show that it is possible to regrow InAs above the InAsSb alloy segment, at least up to an intermediate antimony composition. Such double heterostructures might find applications both as mid-infrared detectors and as building blocks of electronic devices taking advantage of the outstanding electronic and thermal properties of antimonide compound semiconductors.
We have used Raman spectroscopy, transmission electron microscopy, x-ray diffraction, and x-ray photoemission spectroscopy to investigate strain relaxation mechanism of Si(0.22)Ge(0.78) heteroepitaxial layer deposited on Si substrates in tensile, neutral, and compressive strain conditions. The three regimes have been obtained by interposing between the SiGe layer and the substrate a fully relaxed Ge layer, a partially relaxed Ge layer, or growing directly the alloy on Si. We found that the deposition of a Ge buffer layer prior to the growth of the SiGe is very promising in view of the realization of thin virtual substrates on silicon to be used for the deposition of strain-controlled high Ge content SiGe alloys. We demonstrate that this is mainly due to the strain relaxation mechanism in the Ge layer occurring via insertion of pure edge 90 degrees misfit dislocations (MDs) and to the confinement of threading arms in to the Ge layer due to a second MD network formed at the SiGe/Ge heterointerface
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.