Bone metastasis is a painful complication of advanced prostate cancer. Endothelin-1 is a tumor-secreted factor that plays a central role in osteoblast activation and the osteosclerotic response of prostate cancer metastatic to bone. Antagonists that block the activation of the endothelin A receptor (ETAR), located on osteoblasts, reduce osteoblastic bone lesions in animal models of bone metastasis. However, ETAR antagonists demonstrated limited efficacy in clinical trials of men with advanced prostate cancer who also received standard androgen deprivation therapy (ADT). Previous data from our group suggested that, in a mouse model, ETAR antagonists might only be efficacious when androgen signaling in the osteoblast is lowered beyond the ability of standard ADT. This notion was tested in a mouse model of prostate cancer bone metastasis. Castrated and sham-operated male athymic nude mice underwent intracardiac inoculation of the ARCaPM castration-resistant prostate cancer cell line. The mice were then treated with either the ETAR antagonist zibotentan or a vehicle control to generate four experimental groups: vehicle+sham (Veh+Sham), vehicle+castrate (Veh+Castr), zibotentan+sham (Zibo+Sham), and zibotentan+castrate (Zibo+Castr). The mice were monitored radiographically for the development of skeletal lesions. The Zibo+Castr group had significantly longer survival and a single incidental lesion. Mice in the Zibo+Sham group had the shortest survival and the largest number of skeletal lesions. Survival and skeletal lesions of the Veh+Sham and Veh+Castr groups were intermediate compared with the zibotentan-treated groups. We report a complex interaction between ETAR and androgen signaling, whereby ETAR blockade was most efficacious when combined with complete androgen deprivation.
Zibotentan, an endothelin-A receptor antagonist, has been used in the treatment of various cardiovascular disorders and neoplasia. Castrated athymic nude mice receiving zibotentan for a preclinical xenograft efficacy study experienced weight loss, gastrointestinal bloat, and the presence of an audible respiratory click. Human side effects have been reported in the nasal cavity, so we hypothesized that the nasal cavity is a target for toxicity in mice receiving zibotentan. Lesions in the nasal cavity predominantly targeted olfactory epithelium in treated mice and were more pronounced in castrated animals. Minimal lesions were present in vehicle control animals, which suggested possible gavage-related reflux injury. The incidence, distribution, and morphology of lesions suggested direct exposure to the nasal mucosa and a possible systemic effect targeting the olfactory epithelium, driven by a type 2 immune response, with group 2 innate lymphoid cell involvement. Severe nasal lesions may have resulted in recurrent upper airway obstruction, leading to aerophagia and associated clinical morbidity. These data show the nasal cavity is a target of zibotentan when given by gavage in athymic nude mice, and such unanticipated and off-target effects could impact interpretation of research results and animal health in preclinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.