Endophytes are microbial symbionts living inside plants and have been extensively researched in recent decades for their functions associated with plant responses to environmental stress. We conducted a meta-analysis of endophyte effects on host plants' growth and fitness in response to three abiotic stress factors: drought, nitrogen deficiency, and excessive salinity. Ninety-four endophyte strains and 42 host plant species from the literature were evaluated in the analysis. Endophytes increased biomass accumulation of host plants under all three stress conditions. The stress mitigation effects by endophytes were similar among different plant taxa or functional groups with few exceptions; eudicots and C species gained more biomass than monocots and C species with endophytes, respectively, under drought conditions. Our analysis supports the effectiveness of endophytes in mitigating drought, nitrogen deficiency, and salinity stress in a wide range of host species with little evidence of plant-endophyte specificity.
Food security and the agricultural economy are both dependent on the temporal stability of crop yields. To this end, increasing crop diversity has been suggested as a means to stabilize agricultural yields amidst an ongoing decrease in cropping system diversity across the world. Although diversity confers stability in many natural ecosystems, in agricultural systems the relationship between crop diversity and yield stability is not yet well resolved across spatial scales. Here, we leveraged crop area, production, and price data from 1981–2020 to assess the relationship between crop diversity and the stability of both economic and caloric yields at the state level within the USA. We found that, after controlling for climatic instability and differences in irrigated area, crop diversity was positively associated with economic yield stability but negatively associated with caloric yield stability. Further, we found that crops with a propensity for increasing economic yield stability but reducing caloric yield stability were often found in the most diverse states. We propose that price responses to changes in production for high-value crops underly the positive relationship between diversity and economic yield stability. In contrast, spatial concentration of calorie-dense crops in low-diversity states contributes to the negative relationship between diversity and caloric yield stability. Our results suggest that the relationship between crop diversity and yield stability is not universal, but instead dependent on the spatial scale in question and the stability metric of interest.
Fungal endophytes of plants are ubiquitous and important to host plant health. Despite their ecological importance, landscape-level patterns of microbial communities in plant hosts are not well-characterized. Fungal wood-inhabiting and foliar endophyte communities from multiple tree hosts were sampled at multiple spatial scales across a 25 ha subtropical research plot in northern Taiwan, using culture-free, community DNA amplicon sequencing methods. Fungal endophyte communities were distinct between leaves and wood, but the mycobiomes were highly variable across and within tree species. Of the variance that could be explained, host tree species was the most important driver of mycobiome community-composition. Within a single tree species, "core" mycobiomes were characterized using cooccurrence analysis. These core groups of endophytes in leaves and wood show divergent spatial patterns. For wood endophytes, a more consistent, "minimal" core mycobiome coexisted with the host across the extent of the study. For leaf endophytes, the core fungi resembled a more dynamic, "gradient" model of the core microbiome, changing across the topography and distance of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.