Fungal symbioses with plants are ubiquitous, ancient, and vital to both ecosystem function and plant health. However, benefits to fungal symbionts are not well explored, especially in non‐mycorrhizal fungi. The Foraging Ascomycete hypothesis proposes that some wood‐decomposing fungi may shift life‐history strategies to endophytism to bridge gaps in time and space between suitable substrates. To test this hypothesis we examine spatial relationships of Xylaria endophytic fungi in the forest canopy with Xylaria decomposer fungi on the forest floor. We sampled for fungi of the genus Xylaria using a spatially explicit sampling scheme in a remote Ecuadorian cloud forest, and concurrently carried out an extensive culture‐based sampling of fungal foliar endophytes. We found 36 species of Xylaria in our 0.5 ha plot, 31 of which were found to only occur as fruiting bodies. All five species of Xylaria found as endophytes were also found as fruiting bodies. We also tested the relationships of both stages of these fungi to environmental variables. Decomposer fungi were differentiated by species‐specific habitat preferences, with three species being found closer to water than expected by chance. In contrast, endophytes displayed no sensitivity to environmental conditions, such as host, moisture, or canopy cover. We found evidence of spatial linkage between life stages in two species. We also demonstrate that direct transmission of endophytes from leaves to woody substrates is possible. These results indicate that endophytism may represent one way for decomposer fungi to escape moisture limitation, and that endophytic fungi may act as sources of dispersal for decomposer fungi consistent with predictions of the Foraging Ascomycete hypothesis.
Ecuador has among the world's highest biodiversity, despite being a tiny fraction of the world's land area. The threat of extinction for some of this biodiversity has dramatically increased since April 2016, during which time the Ecuadorian government has opened around 13% of the country to mining exploration, with many of the concessions in previously protected forests. Herein, we describe the system of protected lands in Ecuador, their mining laws, and outline the scale of threat by comparing the mammals, amphibians, reptiles, birds, and orchids from several now threatened protected areas, classed as ''Bosques Protectores,'' in the northwestern montane cloud forests. Together, these reserves form a buffer and a southern corridor for the still-protected Cotacachi-Cayapas Ecological Reserve, which is otherwise now surrounded by mining concessions. We gathered published literature, ''gray literature,'' information from reserve records and websites, and our previously unpublished observations to make comparative species tables for each reserve. Our results reveal the potential losses that mining could cause: eight critically endangered species, including two primates (brown-headed spider monkey and white-fronted capuchin), 37 endangered species, 153 vulnerable, 89 near threatened, and a large number of less threatened species. Our data show that each reserve protects a unique subset of taxa in this region of highly localized endemics and the reserves also generate sustainable income for local people. The short-term national profits from mining will not compensate for the permanent biodiversity losses, and the long-term ecosystem service and economic losses at the local and regional level.
The concept of hygiene is rooted in the relationship between cleanliness and the maintenance of good health. Since the widespread acceptance of the germ theory of disease, hygiene has become increasingly conflated with sterilization. In reviewing studies across the hygiene literature (most often hand hygiene), we found that nearly all studies of hand hygiene utilize bulk reduction in bacterial load as a proxy for reduced transmission of pathogenic organisms. This treatment of hygiene may be insufficient in light of recent microbial ecology research, which has demonstrated that humans have intimate and evolutionarily significant relationships with a diverse assemblage of microorganisms (our microbiota). The human skin is home to a diverse and specific community of microorganisms, which include members that exist across the ecological spectrum from pathogen through commensal to mutualist. Most evidence suggests that the skin microbiota is likely of direct benefit to the host and only rarely exhibits pathogenicity. This complex ecological context suggests that the conception of hygiene as a unilateral reduction or removal of microbes has outlived its usefulness. As such, we suggest the explicit definition of hygiene as “those actions and practices that reduce the spread or transmission of pathogenic microorganisms, and thus reduce the incidence of disease.”
Fungal endophytes are a ubiquitous feature of plants, yet for many fungi the benefits of endophytism are still unknown. The Foraging Ascomycete (FA) hypothesis proposes that saprotrophic fungi can utilize leaves both as dispersal vehicles and as resource havens during times of scarcity. The presence of saprotrophs in leaf endophyte communities has been previously observed but their ability to transfer to non-foliar saprobic substrates has not been well investigated. To assess this ability, we conducted a culture study by placing surface-sterilized leaves from a single tropical angiosperm tree (Nectandra lineatifolia) directly onto sterile wood fragments and incubating them for 6 weeks. Fungi from the wood were subsequently isolated in culture and identified to the genus level by ITS sequences or morphology. Four-hundred and seventy-seven fungal isolates comprising 24 taxa were cultured from the wood. Of these, 70.8% of taxa (82.3% of isolates) belong to saprotrophic genera according to the FUNGuild database. Furthermore, 27% of OTUs (6% of isolates) were basidiomycetes, an unusually high proportion compared to typical endophyte communities. Xylaria flabelliformis, although absent in our original isolations, formed anamorphic fruiting structures on the woody substrates. We introduce the term viaphyte (literally, “by way of plant”) to refer to fungi that undergo an interim stage as leaf endophytes and, after leaf senescence, colonize other woody substrates via hyphal growth. Our results support the FA hypothesis and suggest that viaphytism may play a significant role in fungal dispersal.
Plants are typically infected by a consortium of internal fungal associates, including endophytes in their leaves, as well as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in their roots. It is logical that these organisms will interact with each other and the abiotic environment in addition to their host, but there has been little work to date examining the interactions of multiple symbionts within single plant hosts, or how the relationships among symbionts and their host change across environmental conditions. We examined the grass Agrostis capillaris in the context of a climate manipulation experiment in prairies in the Pacific Northwest, USA. Each plant was tested for presence of foliar endophytes in the genus Epichloë, and we measured percent root length colonized (PRLC) by AMF and DSE. We hypothesized that the symbionts in our system would be in competition for host resources, that the outcome of that competition could be driven by the benefit to the host, and that the host plants would be able to allocate carbon to the symbionts in such a way as to maximize fitness benefit within a particular environmental context. We found a correlation between DSE and AMF PRLC across climatic conditions; we also found a fitness cost to increasing DSE colonization, which was negated by presence of Epichloë endophytes. These results suggest that selective pressure on the host is likely to favor host/symbiont relationships that structure the community of symbionts in the most beneficial way possible for the host, not necessarily favoring the individual symbiont that is most beneficial to the host in isolation. These results highlight the need for a more integrative, systems approach to the study of host/symbiont consortia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.