Graves' orbitopathy, also known as thyroid eye disease or thyroid-associated orbitopathy, is visually disabling, cosmetically disfiguring and has a substantial negative impact on a patients' quality of life. There is increasing awareness of the need for early diagnosis and rapid specialist input from endocrinologists and ophthalmologists. Glucocorticoids are the mainstay of treatment; however, recurrence occurs frequently once these are withdrawn. Furthermore, in >60% of cases, normal orbital anatomy is not restored, and skilled rehabilitative surgery is required to reduce disfigurement, double vision and occasionally, to preserve vision. Clinical trials from over the past decade [Au: edits to define "recent" OK? Please edit my changes if I have misunderstood you This is fine] have shown that considerable benefit can be derived from the addition of anti-proliferative agents (such as mycophenolate or azathioprine) in preventing deterioration after steroid cessation. In addition, targeted biologic therapies have shown promise, including teprotumumab (anti-IGF-1R), which seems to substantially reduce proptosis, rituximab (anti-CD20), which reduces inflammation, and tocilizumab, which potentially benefits both of these parameters. Other strategies such as orbital radiotherapy have had their widespread role in combination therapy called into question. In the last decade, the pathophysiology of Graves' orbitopathy has also been revised with identification of new potential therapeutic targets. In this review we provide an up-to-date overview of the field, [Au: addition of linking text OK? This is fine] outline the optimal management of Graves' orbitopathy and summarise the research developments in this area to highlight future research questions and direct future clinical trials.
Extracellular vesicles (EVs) are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA). EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS) and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation) whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ.
A lambda gt11 cDNA library was constructed from a normal human thyroid and screened with a rabbit anti‐porcine thyroperoxidase antibody. A series of thyroperoxidase (TPO) clones were obtained which allowed determination of the complete primary structure of the protein. The library was also screened with serum from a patient with Hashimoto's thyroiditis, an autoimmune disease characterized by the presence in the serum of high titers of autoantibodies directed against the ‘microsomal antigen’ (McAg). Comparison of the cDNA sequences from TPO clones and McAg clones provides definite proof that the McAg is TPO. A short segment of TPO was characterized as bearing a major epitope involved in autoimmunity. The primary structure of TPO was 42% homologous to myeloperoxidase (MPO). It contains, in addition, a C‐terminal extension with a membrane anchor region contiguous to two domains encoded by modules belonging to the EGF and C4b gene families. The existence in TPO of still another domain presenting a significant homology with a putative heme‐binding region of cytochrome C oxidase polypeptide I raises the possibility that a mitochondrial gene module has contributed a piece to the evolution of a typical nuclear mosaic gene.
Since the 1970s, the role of infectious diseases in the pathogenesis of Graves' disease (GD) has been an object of intensive research. The last decade has witnessed many studies on Yersinia enterocolitica, Helicobacter pylori and other bacterial organisms and their potential impact on GD. Retrospective, prospective and molecular binding studies have been performed with contrary outcomes. Until now it is not clear whether bacterial infections can trigger autoimmune thyroid disease. Common risk factors for GD (gender, smoking, stress, and pregnancy) reveal profound changes in the bacterial communities of the gut compared to that of healthy controls but a pathogenetic link between GD and dysbiosis has not yet been fully elucidated. Conventional bacterial culture, in vitro models, next generation and high-throughput DNA sequencing are applicable methods to assess the impact of bacteria in disease onset and development. Further studies on the involvement of bacteria in GD are needed and may contribute to the understanding of pathogenetic processes. This review will examine available evidence on the subject.
Maternal thyroxine during pregnancy did not improve child cognition at age 9.5 years. Our findings confirmed CATS-I and suggest that the lack of treatment effect may be a result of the similar proportion of IQ < 85 in children of women with normal-GTF and SGTF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.