The question of electromobility is greatly discussed theme of the present especially in connection with the reduction of greenhouse gas emissions. In order to fulfill decarbonization targets, incentives of many countries lead to the support of electromobility. In this paper we ask to which extend are Visegrád Group countries prepared for the widespread utilization of electric cars and define a new coefficient K called the infrastructural country electromobility coefficient. Its computing is covered by appropriate analysis and calculations done previously. Several indices that keep particular information about the state of preparation for electromobility are defined and debated here, as well. Their product forms the coefficient K. Obtained results include outcomes and discussion regarding the level of infrastructural electromobility preparedness for the chosen states, among which we extra focus on the position of Slovakia compared to the European Union average and European electromobility leaders. Based on the data obtained, we found out that the stage of preparation of Slovakia for electromobility among Visegrad Group countries is rather good, although it is far behind the European Union leaders. We realized that there was a rapid growth of electromobility infrastructure in Slovak Republic in the last five years as its infrastructural country electromobility coefficient grew 334 times.
Geopolymers are materials prepared from alkaline-activated cement without a calcium constituent. They are synthetic materials based on aluminosilicates. The main advantage of these environmentally friendly materials is that they save mineral resources and due to being free of calcium constituents, and only a small amount of CO2 emissions are released into the environment. The circular economy model of sustainable development of new composite materials will ensure the competitiveness of industries, their stable economic growth, and a healthy environment. This paper aims to investigate geopolymer composite materials that were reinforced with a mixture of glass powder from recycled windscreens. The glass 100% circulates in the closed material cycle and can be used again in the manufacturing process without any loss of quality. We are focused on verification of readability of selected automatic identification technology and their usability directly in the manufacturing process of geopolymer composite materials.
This article is devoted to modelling of the extracted raw material removal from a mining area to the entry point for the next technological process. Two approaches were chosen for the process modelling. The first approach is regarded to traffic modelling by using available mathematical equations, based on capacity conversion and calculation of loading equipment efficiency. The second approach of modelling is computer simulation within the simulation system ExtendSim8. The modelling of the transport system and the determination of its efficiency were performed at the same conditions. The examined transport system was consisted of two lorries and one loader. The article presents the results of calculations and the results of simulation experiments, which also verified the results obtained by calculations. Calculations of the transport system performance and simulation experiments were performed for two time periods, for a time of 1 h and 6 h during a shift from three different loading places, which were 500, 1100 and 1450 m away from a place of unloading. The results obtained by both approaches are comparable. The main contribution, novelty, of this article is the modelling of the process in a quarry operation (loading and removal of mineral resources) not only on the basis of available mathematical formulas but also the application of simulation in the simulation tool EXTENDSim8, performing simulation experiments for specified conditions and their comparison with calculated values. Simulation is a suitable tool for determining and subsequently planning of the performance of both existing and projected transport systems.
The warehouse process, as one of many logistics processes, currently holds an irreplaceable position in logistics systems in companies and in the supply chain. The proper function of warehouse operations depends on, among other things, the type of the used technology and their utilization. The research in this article is focused on the design of a warehouse system. The selection of a suitable warehouse system is a current research topic as the warehouse system has an impact on warehouse capacity and utilization and on the speed of storage activities. The paper presents warehouse system design methodology that was designed applying the logistics principle-systematic (system) approach. The starting point for designing a warehouse system represents of the process of design logistics systems. The design process consists of several phases: project identification, design process paradigm selection, system analysis, synthesis, and project evaluation. This article’s contribution is the proposed methodology and design of the warehouse system for the specified conditions. The methodology was implemented for the design of a warehouse system in a cold box, which is a part of a distribution warehouse. The technology of pallet racking was chosen in the warehouse to store pallets. Pallets will be stored and removed by forklifts. For the specified conditions, the warehouse system was designed for two alternatives of racking assemblies, which are served by forklifts. Alternative 1—Standard pallet rack with wide aisles and Alternative 2—Pallet dynamic flow rack. The proposed systems were compared on the basis of selected indicators: Capacity—the number of pallet places in the system, Percentage ratio of storage area from the box area, Percentage ratio of handling aisles from the box area, Access to individual pallets by forklift, Investment costs for 1 pallet space in EUR. Based on the multicriteria evaluation, the Alternative 2 was chosen as the acceptable design of the warehouse system with storage capacity 720 pallet units. The system needs only two handling aisles. Loading and unloading processes are separate from each other, which means that there are no collisions with forklifts. The pallets with the goods are operated on the principle of FIFO (first in, first out), which will facilitate the control of the shelf life of batches or series of products. The methodology is a suitable tool for decision-making in selecting and designing a warehouse system.
Taking climate and geopolitical issues into account, we must shift our thinking towards “eco” and focus on renewable energy. The accessible solar energy represents 400 times the amount of consumption, while its potential represents 10,000 times the amount of demand. The paper aims to analyze recycled, customized polyvinyl butyral (PVB) with high purity (more than 98%) concerning its physicochemical and mechanical properties and its possible applicability in the photovoltaic industry as an encapsulating material. The detailed investigation on polyvinyl butyral starting from characterizations, homogenization, and moulding process to tensile tests and used exposure testing in laboratory apparatus are performed. Samples of recycled polyvinyl butyral were exposed to ultraviolet (UV) radiation of the value 0.76 W.m–2.nm–1 at 340 nm, water spray, drying at 50 °C and condensation for 320 h when the radiation was turned off. The results obtained were more controlled in a laboratory environment than those found in external, uncontrolled environments. These conditions subsequently accelerate any degradation of polyvinyl butyral as a material and subsequent degradation of the final product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.