Full range constant strain rate tests are required for accurately characterizing initial yield point, strength differential effect and direct identification of constitutive laws describing the plastic behavior of materials. These tests require the use of a closedloop control in order to achieve the constant strain rate, however this feature is not available in many laboratories. An alternative method is proposed here for full range constant strain rate with testing machines that can be configured for user-defined displacements of the cross head prior to testing. Tests performed at a constant die speed include a variable strain rate response for the specimen involved. Significant deformation rate variation occurs between the elastic and plastic range with consequences for initial yield point identification. To overcome this drawback, appropriate user-defined displacements can be computed and applied, allowing for both tensile and compression tests to be performed at a constant strain rate. The method is validated using a compression test of Ti6Al4V alloy at room temperature, as
In this research, the Stewart-Cazacu micromechanics coupled damage model is extended and validated adding nucleation and coalescence models as new damage mechanisms. The Ti–6Al–4V titanium alloy is chosen as a suitable hcp ductile material to be modeled using this extended damage law. The characterization of the damage evolution in this alloy is addressed throughout a quasi-static experimental campaign. Damage characterization relies on in situ X-ray tomography data and scanning electron microscopy imaging technique. The validation procedure consists in the implementation into the finite element research software Lagamine of ULiège and in the comparison of numerical predictions and experimental results. Load–displacement curves and damage-related state variables at fracture configuration from smooth and notched bar specimens submitted to tensile tests are analyzed. The nucleation and coalescence model extensions as well as an accurate elastoplastic and damage material parameter identification for Ti–6Al–4V samples are essential features to reach a validated model. The prediction capabilities exhibited for large strains are in good agreement with experimental results, while the near-fracture strains can still be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.