Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated † Deceased.
Disruptive effects of climate change include range shifts, phenological mismatches among consumers and producers, and population declines. While these biological alterations have been widely documented, studies identifying specific mechanisms linking climate change to population declines are scarce. Extreme events, such as heatwaves can have devastating effects on living organisms and are increasing in frequency as Earth warms. Hence, understanding the effects of heatwaves on insects is necessary to inform conservation efforts and to develop predictions of population dynamics under future climate scenarios. Here, we experimentally evaluated the effects of heatwaves on the survival and phenology of the Baltimore Checkerspot (Euphydryas phaeton phaeton), a wetland butterfly with imperiled populations that has incorporated a novel host. We performed laboratory manipulations (implementing realistic temperature regimes) to assess the effect of heatwaves during summer and winter on the survival and phenology of E. p. phaeton. In addition, we analyzed historical temperature records to quantify the incidence of heatwaves within E. p. phaeton's range to assess their potential role in the decline of southeastern populations. We found that winter heatwaves with maximum temperatures of 20 • C can have more devastating effects on survival than summer heatwaves (up to 41 • C). Eggs endured acute heat stress during summer with no significant effects on phenology and survival; similarly, pre-overwintering larvae were robust to heatwave exposure, as only the most intense heatwave treatment reduced their survival (37% reduction compared to control conditions). By contrast, dormant larvae were the most vulnerable stage, as they lost from 2 to 6% of their body mass after a three-day summer heatwave. Furthermore, their exposure to winter heatwaves resulted in 75 to 100% mortality. Feeding on the native host provided higher resilience under thermal stress than feeding on the invasive, recently acquired host. Finally, both heatwave incidence and severity have increased in the southern range of E. p. phaeton in the period from 1894 to 2011. We show that warm winter days induced severe mortality, providing a mechanistic explanation of how climate change can trigger population declines in E. p. phaeton and other insects.
1. Shelter building and petiole trenching in the Lepidoptera is a behaviour that mediates ecological pressures including those exerted by both food plants and natural enemies.2. Fitness costs and benefits of trenching and shelter-building behaviour related to predation and larval performance were investigated in a pyralid species that inhabits and feeds on leaf shelters.3. Assays comparing the performance of caterpillars feeding on trenched versus nontrenched foliage and fresh versus dry leaves were conducted. Whereas pupal weight was positively affected by petiole trenching, larval development was delayed when caterpillars fed on dry leaves. 4. A field experiment comparing predation on caterpillars inside and outside shelters demonstrated that predation was significantly higher for exposed caterpillars.5. No physiological costs associated with shelter building were found given that caterpillars performed equally regardless of the number of shelters they built.6. The effect sizes of top-down and bottom-up forces on pupal weight, development time, and predation risk indicated that the major effect of shelters is through the reduction of predation risk. The integration of experiments and natural history observations showed that fitness benefits provided by shelters change across ontogeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.