Altered cortical excitability and synapse dysfunction are early pathogenic events in amyotrophic lateral sclerosis (ALS) patients and animal models. Recent studies propose an important role for TAR DNA-binding protein 43 (TDP-43), the mislocalization and aggregation of which are key pathological features of ALS. However, the relationship between ALS-linked TDP-43 mutations, excitability and synaptic function is not fully understood. Here, we investigate the role of ALS-linked mutant TDP-43 in synapse formation by examining the morphological, immunocytochemical and excitability profile of transgenic mouse primary cortical pyramidal neurons that over-express human TDP-43 A315T . In TDP-43 A315T cortical neurons, dendritic spine density was significantly reduced compared to wild-type controls. TDP-43 A315T over-expression increased the total levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropinionic acid (AMPA) glutamate receptor subunit GluR1, yet the localization of GluR1 to the dendritic spine was reduced. These postsynaptic changes were coupled with a decrease in the amount of the presynaptic marker synaptophysin that colocalized with dendritic spines. Interestingly, action potential generation was reduced in TDP-43 A315T pyramidal neurons. This work reveals a crucial effect of the over-expression mutation TDP-43 A315T on the formation of synaptic structures and the recruitment of GluR1 to the synaptic membrane. This pathogenic effect may be mediated by cytoplasmic mislocalization of TDP-43 A315T . Loss of synaptic GluR1, and reduced excitability within pyramidal neurons, implicates hypoexcitability and attenuated synaptic function in the pathogenic decline of neuronal function in TDP-43-associated ALS. Further studies into the mechanisms underlying AMPA receptor-mediated excitability changes within the ALS cortical circuitry may yield novel therapeutic targets for treatment of this devastating disease.
The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.
Microtubule dynamics underpin a plethora of roles involved in the intricate development, structure, function, and maintenance of the central nervous system. Within the injured brain, microtubules are vulnerable to misalignment and dissolution in neurons and have been implicated in injury-induced glial responses and adaptive neuroplasticity in the aftermath of injury. Unfortunately, there is a current lack of therapeutic options for treating traumatic brain injury (TBI). Thus, using a clinically relevant model of mild TBI, lateral fluid percussion injury (FPI) in adult male Thy1-YFPH mice, we investigated the potential therapeutic effects of the brain-penetrant microtubule-stabilizing agent, epothilone D. At 7 days following a single mild lateral FPI the ipsilateral hemisphere was characterized by mild astroglial activation and a stereotypical and widespread pattern of axonal damage in the internal and external capsule white matter tracts. These alterations occurred in the absence of other overt signs of trauma: there were no alterations in cortical thickness or in the number of cortical projection neurons, axons or dendrites expressing YFP. Interestingly, a single low dose of epothilone D administered immediately following FPI (and sham-operation) caused significant alterations in the dendritic spines of layer 5 cortical projection neurons, while the astroglial response and axonal pathology were unaffected. Specifically, spine length was significantly decreased, whereas the density of mushroom spines was significantly increased following epothilone D treatment. Together, these findings have implications for the use of microtubule stabilizing agents in manipulating injury-induced synaptic plasticity and indicate that further study into the viability of microtubule stabilization as a therapeutic strategy in combating TBI is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.