TDP-43 is a major protein component of pathological neuronal inclusions that are present in frontotemporal dementia and amyotrophic lateral sclerosis. We report that TDP-43 plays an important role in dendritic spine formation in the cortex. The density of spines on YFP+ pyramidal neurons in both the motor and somatosensory cortex of Thy1-YFP mice, increased significantly from postnatal day 30 (P30), to peak at P60, before being pruned by P90. By comparison, dendritic spine density was significantly reduced in the motor cortex of Thy1-YFP::TDP-43A315T transgenic mice prior to symptom onset (P60), and in the motor and somatosensory cortex at symptom onset (P90). Morphological spine-type analysis revealed that there was a significant impairment in the development of basal mushroom spines in the motor cortex of Thy1-YFP::TDP-43A315T mice compared to Thy1-YFP control. Furthermore, reductions in spine density corresponded to mislocalisation of TDP-43 immunoreactivity and lowered efficacy of synaptic transmission as determined by electrophysiology at P60. We conclude that mutated TDP-43 has a significant pathological effect at the dendritic spine that is associated with attenuated neural transmission.
Background and Aims Endoplasmic reticulum (ER) stress is associated with liver inflammation and hepatocellular carcinoma (HCC). However, how ER stress links inflammation and HCC remains obscure. Mesencephalic astrocyte‐derived neurotrophic factor (MANF) is an ER stress‐inducible secretion protein that inhibits inflammation by interacting with the key subunit of nuclear factor kappa light chain enhancer of activated B cells (NF‐κB) p65. We hypothesized that MANF may play a key role in linking ER stress and inflammation in HCC. Approach and Results Here, we found that MANF mRNA and protein levels were lower in HCC tissues versus adjacent noncancer tissues. Patients with high levels of MANF had better relapse‐free survival and overall survival rates than those with low levels. MANF levels were also associated with the status of liver cirrhosis, advanced tumor‐node‐metastasis (TNM) stage, and tumor size. In vitro experiments revealed that MANF suppressed the migration and invasion of hepatoma cells. Hepatocyte‐specific deletion of MANF accelerated N‐nitrosodiethylamine (DEN)‐induced HCC by up‐regulating Snail1+2 levels and promoting epithelial‐mesenchymal transition (EMT). MANF appeared in the nuclei and was colocalized with p65 in HCC tissues and in tumor necrosis factor alpha (TNF‐α)‐treated hepatoma cells. The interaction of p65 and MANF was also confirmed by coimmunoprecipitation experiments. Consistently, knockdown of MANF up‐regulated NF‐κB downstream target genes TNF‐α, interleukin (IL)‐6 and IL‐1α expression in vitro and in vivo. Finally, small ubiquitin‐related modifier 1 (SUMO1) promoted MANF nuclear translocation and enhanced the interaction of MANF and p65. Mutation of p65 motifs for SUMOylation abolished the interaction of p65 and MANF. Conclusions MANF plays an important role in linking ER stress and liver inflammation by inhibiting the NF‐κB/Snail signal pathway in EMT and HCC progression. Therefore, MANF may be a cancer suppressor and a potential therapeutic target for HCC.
Altered cortical excitability and synapse dysfunction are early pathogenic events in amyotrophic lateral sclerosis (ALS) patients and animal models. Recent studies propose an important role for TAR DNA-binding protein 43 (TDP-43), the mislocalization and aggregation of which are key pathological features of ALS. However, the relationship between ALS-linked TDP-43 mutations, excitability and synaptic function is not fully understood. Here, we investigate the role of ALS-linked mutant TDP-43 in synapse formation by examining the morphological, immunocytochemical and excitability profile of transgenic mouse primary cortical pyramidal neurons that over-express human TDP-43 A315T . In TDP-43 A315T cortical neurons, dendritic spine density was significantly reduced compared to wild-type controls. TDP-43 A315T over-expression increased the total levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropinionic acid (AMPA) glutamate receptor subunit GluR1, yet the localization of GluR1 to the dendritic spine was reduced. These postsynaptic changes were coupled with a decrease in the amount of the presynaptic marker synaptophysin that colocalized with dendritic spines. Interestingly, action potential generation was reduced in TDP-43 A315T pyramidal neurons. This work reveals a crucial effect of the over-expression mutation TDP-43 A315T on the formation of synaptic structures and the recruitment of GluR1 to the synaptic membrane. This pathogenic effect may be mediated by cytoplasmic mislocalization of TDP-43 A315T . Loss of synaptic GluR1, and reduced excitability within pyramidal neurons, implicates hypoexcitability and attenuated synaptic function in the pathogenic decline of neuronal function in TDP-43-associated ALS. Further studies into the mechanisms underlying AMPA receptor-mediated excitability changes within the ALS cortical circuitry may yield novel therapeutic targets for treatment of this devastating disease.
Background Endoplasmic reticulum (ER) perturbations are novel subcellular effectors involved in the ischaemia‐reperfusion injury. As an ER stress‐inducible protein, mesencephalic astrocyte‐derived neurotrophic factor (MANF) has been proven to be increased during ischaemic brain injury. However, the role of MANF in liver ischaemia reperfusion (I/R) injury has not yet been studied. Methods To investigate the role of MANF in the process of liver ischaemia‐reperfusion, Hepatocyte‐specific MANF knockout (MANFhep−/−) mice and their wild‐type (WT) littermates were used in our research. Mice partial (70%) warm hepatic I/R model was established by vascular occlusion. We detected the serum levels of MANF in both liver transplant patients and WT mice before and after liver I/R injury. Recombinant human MANF (rhMANF) was injected into the tail vein before 1 hour occlusion. AST, ALT and Suzuki score were used to evaluate the extent of I/R injury. OGD/R test was performed on primary hepatocytes to simulate IRI in vitro. RNA sequence and RT‐PCR were used to detect the cellular signal pathway activation while MANF knockout. Results We found that MANF expression and secretion are dramatically up‐regulated during hepatic I/R. Hepatocyte‐specific MANF knockout aggravates the I/R injury through the over‐activated ER stress. The systemic administration of rhMANF before ischaemia has the potential to ameliorate I/R‐triggered UPR and liver injury. Further study showed that MANF deficiency activated ATF4/CHOP and JNK/c‐JUN/CHOP pathways, and rhMANF inhibited the activation of the two proapoptotic pathways caused by MANF deletion. Conclusion Collectively, our study unravels a previously unknown relationship among MANF, UPR and hepatic I/R injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.