This paper presents a technique for the calibration of a 360°dual imaging system (Ricoh Theta S) composed of two cameras with fisheye lenses specially mounted in a common structure. The experiments are based on calibration with a bundle adjustment using the equidistant fisheye lens model and relative orientation stability constraints, such as distance, base elements and rotation matrix between individual cameras' coordinate systems. As a result, an equidistant mathematical model using the Conrady-Brown lens distortion model was shown to be suitable for estimating the interior and relative orientation parameters of the Ricoh Theta S. The main contribution presented in this work is a simultaneous bundle adjustment approach with stability constraints on base elements and rotation matrix angles, which achieved accuracies comparable with conventional photogrammetric calibration with perspective cameras.
The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5–7 cm). These results are consistent with those obtained for other PMTS approaches.
The terrestrial laser scanner (TLS) has become standard technology for vegetation dynamics monitoring. TLS time series have significant underlying application in investigating structural development and dynamics on a daily and seasonal scale. However, the high potential of TLS for the monitoring of long-term temporal phenomena in fully grown trees with high spatial and temporal resolution has not yet been fully explored. Automated TLS platforms for long-term data collection and monitoring of forest dynamics are rare; and long-term TLS time series data is not yet readily available to potential end-user, such as forestry researchers and plant biologists. This work presents an automated and permanent TLS measurement station that collects high frequency and high spatial resolution TLS time series, aiming to monitor short- and long-term phenological changes at a boreal forestry field station (0.006° angular resolution, one scan per hour). The measurement station is the first of its kind considering the scope, accuracy, and length of the time series it produces. The TLS measurement station provides a unique dataset to monitor the 3D physical structure of a boreal forest, enabling new insights into forest dynamics. For instance, the information collected by the TLS station can be used to accurately detect structural changes in tree crowns surrounding the station. These changes and their timing can be linked with the phenological state of plants, such as the start of leaf-out during spring growing season. As the first results of this novel station, we present time series data products collected with the station and what detailed information it provides about the phenological changes in the test site during the leaf sprout in spring.
Photogrammetric documentation can provide a sound database for the needs of architectural heritage preservation. However, the major part of photogrammetric documentation production is not used for subsequent architectural heritage projects, due to lack of knowledge of photogrammetric documentation accuracy. In addition, there are only a few studies with rigorous analysis of the requirements for photogrammetric documentation of architectural heritage. In particular, requirements focusing on the geometry of the models generated by fully digital photogrammetric processes are missing. Considering these needs, this paper presents a procedure for architectural heritage documentation with photogrammetric techniques based on a previous review of existing standards of architectural heritage documentation. The data product specification proposed was elaborated conforming to ISO 19131 recommendations. We present the procedure with two case studies in the context of Brazilian architectural heritage documentation. Quality analysis of the produced models were performed considering ISO 19157 elements, such as positional accuracy, logical consistency and completeness, meeting the requirements. Our results confirm that the proposed requirements for photogrammetric documentation are viable. OPEN ACCESSRemote Sens. 2015, 7 13338
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.