Recently, the number of new cases of cutaneous leishmaniasis has been of concern among health agencies. Research that offers new therapeutic alternatives is advantageous, especially those that develop innovative drugs. Therefore, this paper presents the incorporation of Copaifera reticulata Ducke and chlorophyll extract into Pluronic®® F127 and Carbopol gels, under optimized polymer quantities. The chlorophyll extract (rich in photosensitizing compounds) was obtained by continuous-flow pressurized liquid extraction (PLE), a clean, environmentally friendly method. The system aims to act as as a leishmanicidal, cicatrizant, and antibiotic agent, with reinforcement of the photodynamic therapy (PDT) action. Rheological and mechanical analyses, permeation studies and bioadhesiveness analyses on human skin, and PDT-mediated activation of Staphylococcus aureus were performed. The emulgels showed gelation between 13° and 15 °C, besides pseudoplastic and viscoelastic properties. Furthermore, the systems showed transdermal potential, by releasing chlorophylls and C. reticulata Ducke into the deep layers of human skin, with good bioadhesive performance. The application of PDT reduced three logarithmic colony-forming units of S. aureus bacteria. The results support the potential of the natural drug for future clinical trials in treating wounds and cutaneous leishmania.
Copaiba oil (CO) is an oleoresin containing resinous acids, comprising mainly of diterpenes, and volatile compounds, comprising of sesquiterpenes. CO has been used for many years as a therapeutic agent and cosmetic, being the β-caryophyllene (CAR) one of the main sesquiterpene markers found in CO samples. During the last years, some analytical methods have been developed for analysis of sesquiterpenes like CAR from CO. However, these methods are based on gas chromatography, and requiring additional steps, such as derivatization or extraction of the essential fraction of the CO for sesquiterpenes analysis. Liquid chromatography methodologies have been proposed only for analysis of diterpenes. Therefore, the aim of this study was to develop a high-performance liquid chromatography (HPLC) assay for CAR analysis in CO samples (Copaifera reticulata Ducke) and in emulsion systems containing CO. The HPLC system suitability was determined through the capacity factor, repeatability, relative retention, resolution, tailing factor, theoretical plate number and the height of the theoretical plate; where the method developed showed the efficiency for separation of CO compounds. The method was validated displaying specificity, linearity, precision, accuracy, and robustness. Moreover, it showed to be of utmost importance to analyze CO in emulsion systems, displaying versatile and applicability.
Leishmaniasis is a disease caused by protozoa species of the Leishmania genus, and the current treatments face several difficulties and obstacles. Most anti-leishmanial drugs are administered intravenously, showing many side effects and drug resistance. The discovery of new anti-leishmanial compounds and the development of new pharmaceutical systems for more efficient and safer treatments are necessary. Copaiba oil-resin (CO) has been shown to be a promising natural compound against leishmaniasis. However, CO displays poor aqueous solubility and bioavailability. Self-emulsifying drug delivery systems (SEDDS) can provide platforms for release of hydrophobic compounds in the gastrointestinal tract, improving their aqueous solubilization, absorption and bioavailability. Therefore, the present work aimed to develop SEDDS containing CO and Soluplus® surfactant for the oral treatment of leishmaniasis. The design of the systems was accomplished using ternary phase diagrams. Emulsification and dispersion time tests were used to investigate the emulsification process in gastric and intestinal environments. The formulations were nanostructured and improved the CO solubilization. Their in vitro antiproliferative activity against promastigote forms of L. amazonensis and L. infantum, and low in vitro cytotoxicity against macrophages were also observed. More studies are necessary to determine effectiveness of SOL in these systems, which can be candidates for further pharmacokinetics and in vivo investigations.
Fotoprotetores podem ser desenvolvidos a partir de diferentes bases como cremes, géis e géis-cremes. Os estudos de estabilidade acelerada estão relacionados com a previsão do prazo de validade do produto onde as amostras são colocadas em condições extremas de temperatura e umidade, acelerando possíveis reações de instabilidade da formulação. Os testes foram realizados em um período de dois meses. As características organolépticas não apresentaram alterações, os valores de pH se mantiveram entre 5-6, a densidade apresentou valores próximo a 1 g/mL, a viscosidade variou de 7500 a 84500 mPa. e os valores de FPS permaneceram próximo a 30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.