Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reduction of PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in 35% reduction of PU.1 expression, was sufficient to induce myeloid biased preleukemic stem cells and subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1 cooperating transcription factor, Irf8. Strikingly, we found significant molecular similarities with human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor that commonly occurs in human disease is sufficient to initiate cancer development and provides mechanistic insight into the formation and progression of preleukemic stem cells in AML.
Eltrombopag (EP), a small-molecule thrombopoietin receptor (TPO-R) agonist and potent intracellular iron chelator, has shown remarkable efficacy in stimulating sustained multilineage hematopoiesis in patients with bone marrow failure syndromes, suggesting an effect at the most immature hematopoietic stem and multipotent progenitor level. Although the functional and molecular effects of EP on megakaryopoiesis have been studied in the past, mechanistic insights into its effects on the earliest stages of hematopoiesis have been limited. We investigated the effects of EP treatment on hematopoietic stem cell (HSC) function using purified primary HSCs in separation-of-function mouse models, including a TPO-R-deficient strain, and stem cells isolated from patients undergoing TPO-R agonist treatment. Our mechanistic studies showed a stimulatory effect on stem cell self-renewal independently of TPO-R. Human and mouse HSCs responded to acute EP treatment with metabolic and gene expression alterations consistent with a reduction of intracellular labile iron pools that are essential for stem cell maintenance. Iron preloading prevented the stem cell stimulatory effects of EP. Moreover, comparative analysis of stem cells in the bone marrow of patients receiving EP showed a marked increase in the number of functional stem cells compared to patients undergoing therapy with romiplostim, another TPO-R agonist lacking an iron-chelating ability. Together, our study demonstrates that EP stimulates hematopoiesis at the stem cell level through iron chelation-mediated molecular reprogramming and indicates that labile iron pool-regulated pathways can modulate HSC function.
Purpose: Overactivation of TGF-b signaling is observed in myelodysplastic syndromes (MDS) and is associated with dysplastic hematopoietic differentiation. Galunisertib, a first-in-class oral inhibitor of the TGF-b receptor type 1 kinase (ALK5) has shown effectiveness in preclinical models of MDS and acceptable toxicity in phase I studies of solid malignancies.Patients and Methods: A phase II multicenter study of galunisertib was conducted in patients with very low-, low-, or intermediate-risk MDS by the Revised International Prognostic Scoring System criteria with hemoglobin 10.0 g/dL. Patients received oral galunisertib 150 mg twice daily for 14 days on/14 days off.Results: Ten of 41 evaluable patients (24.4%; 95% confidence interval, 12.4-40.3) achieved hematologic improvement erythroid response by International Working Group (IWG) 2006 criteria. A total of 18 of 41 patients (43.9%) achieved erythroid response as per IWG 2000 criteria. Nine of 28 (32.1%) of transfusion-dependent patients had hematologic improvement. A total of 18 of 41 (44%) patients had a significant reduction in fatigue. Overall median duration of response was 90 days in all patients. Rigorous stem and progenitor flow cytometry showed that patients with an early stem cell differentiation block were more likely to respond to galunisertib. The most common treatment-emergent adverse events were grade 1 or 2 in 20 (49%) of 41 patients, including any-grade fatigue (8/41, 20%), diarrhea (7/41, 17%), pyrexia (5/41, 12%), and vomiting (5/41, 12%).Conclusions: In summary, galunisertib treatment has an acceptable safety profile and was associated with hematologic improvements in lower-and intermediate-risk MDS, with responses in heavily transfusion-dependent patients and in those with signs of an early stem cell differentiation block.
Highlights d ASN007 is a reversible ATP-competitive inhibitor of ERK1 and ERK2 kinase activity d The presence of RAS/RAF pathway mutations predicts enhanced efficacy of ASN007 d ASN007 demonstrates strong efficacy in a resistant melanoma PDX model d Combination with a PI3K inhibitor enhances ASN007
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.