Chitosan has become increasingly applied in agriculture worldwide, thus entering the soil environment. We hypothesized that chitosan should affect the water stability of soil. Since this problem has not been studied to date, we examined, for the first time, the influence of chitosan on the water stability and wettability of soil aggregates. The aggregates were prepared from four soils with various properties amended with different amounts of two kinds of powdered chitosan, and subjected to 1 and/or 10 wetting–drying cycles. The water stability was measured by monitoring air bubbling after aggregate immersion in water, and the wettability was measured by a water drop penetration test. The biopolymer with a lower molecular mass, lower viscosity, and higher degree of deacetylation was more effective in increasing the water stability of the soil than the biopolymer with a higher molecular mass, higher viscosity, and lower deacetylation degree. After a single wetting-drying cycle, the water stability of the soil aggregates containing chitosan with a higher molecular mass was generally lower than that of the soil; after ten wetting–drying cycles, the water stability increased 1.5 to 20 times depending on the soil. The addition of low-molecular-mass chitosan after a single wetting-drying cycle caused the water stability to become one to two hundred times higher than that of the soil. A trial to find out which soil properties (pH, C and N content, bulk density, porosity, and particle size distribution) are responsible for the effectiveness of chitosan action was not successful, and this will be the objective of further studies.
Simple data correlation of flashpoint data of binary mixture has been developed on a basic of rational reciprocal function. The new approximation requires has only two coefficients and needs the flashpoint temperature of the pure flammable component to be known. The approximation has been tested by literature data concerning aqueous-alcohol solution and compared to calculations performed by several thermodynamic models predicting flashpoint temperatures. The suggested approximation provides accuracy comparable and to some extent better than that of the thermodynamic methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.