The amount of available spatio-temporal data has been increasing as large-scale data collection (e.g., from geosensor networks) becomes more prevalent. This has led to an increase in spatio-temporal forecasting applications using geo-referenced time series data motivated by important domains such as environmental monitoring (e.g., air pollution index, forest fire risk prediction). Being able to properly assess the performance of new forecasting approaches is fundamental to achieve progress. However, the dependence between observations that the spatio-temporal context implies, besides being challenging in the modelling step, also raises issues for performance estimation as indicated by previous work. In this paper, we empirically compare several variants of cross-validation (CV) and out-of-sample (OOS) performance estimation procedures that respect data ordering, using both artificially generated and real-world spatio-temporal data sets. Our results show both CV and OOS reporting useful estimates. Further, they suggest that blocking may be useful in addressing CV's bias to underestimate error. OOS can be very sensitive to test size, as expected, but estimates can be improved by careful management of the temporal dimension in training.
This paper addresses the issue of learning time series forecasting models in changing environments by leveraging the predictive power of ensemble methods. Concept drift adaptation is performed in an active manner, by dynamically combining base learners according to their recent performance using a non-linear function. Diversity in the ensembles is encouraged with several strategies that include heterogeneity among learners, sampling techniques and computation of summary statistics as extra predictors. Heterogeneity is used with the goal of better coping with different dynamic regimes of the time series. The driving hypotheses of this work are that (i) heterogeneous ensembles should better fit different dynamic regimes and (ii) dynamic aggregation should allow for fast detection and adaptation to regime changes. We extend some strategies typically used in classification tasks to time series forecasting. The proposed methods are validated using Monte Carlo simulations on 16 realworld univariate time series with numerical outcome as well as an artificial series with clear regime shifts. The results provide strong empirical evidence for our hypotheses. To encourage reproducibility the proposed method is publicly available as a software package.
The increasing use of sensor networks has led to an ever larger number of available spatiotemporal datasets. Forecasting applications using this type of data are frequently motivated by important domains such as environmental monitoring. Being able to properly assess the performance of different forecasting approaches is fundamental to achieve progress. However, traditional performance estimation procedures, such as cross-validation, face challenges due to the implicit dependence between observations in spatiotemporal datasets. In this paper, we empirically compare several variants of cross-validation (CV) and out-of-sample (OOS) performance estimation procedures, using both artificially generated and real-world spatiotemporal datasets. Our results show both CV and OOS reporting useful estimates, but they suggest that blocking data in space and/or in time may be useful in mitigating CV’s bias to underestimate error. Overall, our study shows the importance of considering data dependencies when estimating the performance of spatiotemporal forecasting models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.