Bovine viral diarrhea virus 1 (BVDV-1) belongs to the genus Pestivirus within the family Flaviviridae. Based on the 5' untranslated region (UTR) sequence, BVDV-1 can be divided into at least 17 subtypes (1a though 1q). BVDV-1i is an uncommon subtype that has been reported in the United Kingdom and Uruguay. Here, we report the complete genome sequence of the first subtype 1i BVDV-1 (strain ACM/BR/2016) isolated from cattle in southern Brazil. The genome is 12,231 nt in length and contains a single ORF that encodes a polyprotein of 3,896 amino acids, flanked by 5' and 3'UTRs of 325 and 220 nt, respectively. Phylogenetic inferences based on the whole genome, the 5'UTR, and the N region showed that strain ACM/BR/2016 is closely related to previously characterized BVDV-1i members. Its 5'UTR shares the highest nucleotide identity (90.5%) with BVDV-1i strains from United Kingdom, and its N is most closely related to that of a Uruguayan strain (90.6%). To the best of our knowledge, this is the first BVDV-1i strain from which the whole genome has been completely sequenced and characterized. The complete genome of a BVDV-1i will help future studies on pestivirus evolution and heterogeneity.
BackgroundXylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition.ResultsWe found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments.ConclusionsWe observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.
Hepatitis C virus (HCV) (genus Hepacivirus; family Flaviviridae) is a major human pathogen causing persistent infection and hepatic injury. Recently, emerging HCV-like viruses were described infecting wild animals, such as bats and rodents, and domestic animals, including dogs, horses, and cattle. Using degenerate primers for detecting bovine pestiviruses in a 1996 survey three bovine serum samples showed a low identity with the genus Pestivirus of the Flaviviridae family. A virus could not be isolated in cell culture. The description of bovine hepaciviruses (BovHepV) in 2015 allowed us to retrospectively identify the sequences as BovHepV, with a 88.9% nucleotide identity. In a reconstructed phylogenetic tree, the Brazilian BovHepV samples grouped within the bovine HCV-like cluster in a separated terminal node that was more closely related to the putative bovine Hepacivirus common ancestor than to bovine hepaciviruses detected in Europe and Africa.
'HoBi'-like viruses comprise a putative new species within the genus Pestivirus of the family Flaviviridae. 'HoBi'-like viruses have been detected worldwide in batches of fetal calf serum, in surveillance programs for bovine pestiviruses and from animals presenting clinical signs resembling bovine viral diarrhea virus (BVDV)-associated diseases. To date, few complete genome sequences of 'HoBi'-like viruses are available in public databases. Moreover, detailed analyses of such genomes are still scarce. In an attempt to expand data on the genetic diversity and biology of pestiviruses, two genomes of 'HoBi'-like viruses recovered from Brazilian cattle were described and characterized in this study. Analysis of the whole genome and antigenic properties of these two new 'HoBi'-like isolates suggest that these viruses are genetically close to recognized pestiviruses. The present data provide evidence that 'HoBi'-like viruses are members of the genus Pestivirus and should be formally recognized as a novel species.
The industrial ethanolic fermentation process is operated in distilleries, either in fed-batch or continuous mode. A consequence of the large industrial ethanol production is bacterial contamination in the fermentation tanks, which is responsible for significant economic losses. To investigate this community, we accessed the profile of bacterial contaminant from two distilleries in Brazil, each operating a different fermentation mode, throughout sugarcane harvest of 2013-2014. Bacterial communities were accessed through Illumina culture-independent 16S rDNA gene sequencing, and qPCR was used to quantify total bacteria abundance. Both ethanol production modes showed similar bacterial abundance, around 105 gene copies/mL. 16S rDNA sequencing showed that 92%-99% of the sequences affiliated to Lactobacillus genus. Operational taxonomic units differently represented belonged mainly to Lactobacillus, but also to Weissella, Pediococcus, Acetobacter and Anaeosporobacter, although in lower abundance. Alpha-diversity only showed a correlation through the fermentation tanks in continuous mode, where it was always higher in the second and third tanks. Beta-diversity clearly separated the two distilleries and metagenome prediction reinforces clusterization within distilleries. Despite certain variations between bacterial community in the distilleries throughout harvest season, Lactobacillus were the main genera reported in both distilleries and bacterial community seemed to persist along time, suggesting bacterial reinfestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.