Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally ‘sensitive’ symbiont, designated Symbiodinium C1b-c , while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1 Aiptasia , genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997–1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral–algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area's unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize 123Rev Fish Biol Fisheries (2018) 28:749-776 https://doi.org/10.1007/s11160-018-9529-y( 0123456789().,-volV) (0123456789().,-volV)
Aligning the ecological and social dimensions of the connections present between users that harvest a shared natural resource is a necessary step toward sustainable management. However, contrasting estimates of connectivity across disciplines is a challenging task and few empirical studies have focused on population dynamics within fish species with a complex life history. We used a collaborative approach merging citizen science, population genetics, oceanographic modeling, and interviews to collect empirical connectivity data of individual fish, fishing sites, and fishers. We integrated the data within a multilevel social-ecological network framework describing the interactions between two communities of small-scale fishers (Bahia Kino and Puerto Libertad, Sonora, Mexico) targeting leopard grouper (Mycteroperca rosacea). We identified two types of social-ecological links, including the use of specific fishing sites by individual fishers and the harvest of individual fish by individual fishers. Despite their fishing zones not overlapping, the ecological links between two communities located ~150 km apart were consistent and reciprocal where fishing grounds from each community acted as a source of fish to the other during the larval or juvenile/adult stages, respectively. As a result, fishers from the two communities frequently captured fish that were second-degree relatives. In contrast, the probability of social ties among fishers changed significantly depending on the type of connection and was considerably low for leadership and kinship although some communication was present. Our study highlighted how local actions (e.g., recovery from marine reserves or overfishing) are likely to impact the neighboring community as much as locally. The geographic scale and strength of key ecological process supporting fish stocks through the fish life cycle seem to be larger than those of social connections among fishers. Fishers and managers could benefit from a broader regional perspective that strengthens connections between communities about shared goals and activities. We examine some insights learned on the constraints of connectivity given different attributes of each ecological and social component and methodological challenges identified. We also discuss ways to improve collaborative management between the two communities.
Climate-smart conservation addresses the vulnerability of biodiversity to climate change impacts but may require transboundary considerations. Here, we adapt and refine 16 biophysical guidelines for climate-smart marine reserves for the transboundary California Bight ecoregion. We link several climate-adaptation strategies (e.g., maintaining connectivity, representing climate refugia, and forecasting effectiveness of protection) by focusing on kelp forests and associated species. We quantify transboundary larval connectivity along ~800 km of coast and find that the number of connections and the average density of larvae dispersing through the network under future climate scenarios could decrease by ~50%, highlighting the need to protect critical steppingstone nodes. We also find that although focal species will generally recover with 30% protection, marine heatwaves could hinder subsequent recovery in the following 50 years, suggesting that protecting climate refugia and expanding the coverage of marine reserves is a priority. Together, these findings provide a first comprehensive framework for integrating climate resilience for networks of marine reserves and highlight the need for a coordinated approach in the California Bight ecoregion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.