Reef corals are sentinels for the adverse effects of rapid global warming on the planet's ecosystems. Warming sea surface temperatures have led to frequent episodes of bleaching and mortality among corals that depend on endosymbiotic micro-algae (Symbiodinium) for their survival. However, our understanding of the ecological and evolutionary response of corals to episodes of thermal stress remains inadequate. For the first time, we describe how the symbioses of major reef-building species in the Caribbean respond to severe thermal stress before, during and after a severe bleaching event. Evidence suggests that background populations of Symbiodinium trenchi (D1a) increased in prevalence and abundance, especially among corals that exhibited high sensitivity to stress. Contrary to previous hypotheses, which posit that a change in symbiont occurs subsequent to bleaching, S. trenchi increased in the weeks leading up to and during the bleaching episode and disproportionately dominated colonies that did not bleach. During the bleaching event, approximately 20 per cent of colonies surveyed harboured this symbiont at high densities (calculated at less than 1.0% only months before bleaching began). However, competitive displacement by homologous symbionts significantly reduced S. trenchi's prevalence and dominance among colonies after a 2-year period following the bleaching event. While the extended duration of thermal stress in 2005 provided an ecological opportunity for a rare host-generalist symbiont, it remains unclear to what extent the rise and fall of S. trenchi was of ecological benefit or whether its increased prevalence was an indicator of weakening coral health.
Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally ‘sensitive’ symbiont, designated Symbiodinium C1b-c , while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1 Aiptasia , genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997–1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral–algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities.
Human-induced environmental changes have ushered in the rapid decline of coral reef ecosystems, particularly by disrupting the symbioses between reef-building corals and their photosymbionts. However, escalating stressful conditions enable some symbionts to thrive as opportunists. We present evidence that a stress-tolerant “zooxanthella” from the Indo-Pacific Ocean, Symbiodinium trenchii, has rapidly spread to coral communities across the Greater Caribbean. In marked contrast to populations from the Indo-Pacific, Atlantic populations of S. trenchii contained exceptionally low genetic diversity, including several widespread and genetically similar clones. Colonies with this symbiont tolerate temperatures 1–2 °C higher than other host–symbiont combinations; however, calcification by hosts harboring S. trenchii is reduced by nearly half, compared with those harboring natives, and suggests that these new symbioses are maladapted. Unforeseen opportunism and geographical expansion by invasive mutualistic microbes could profoundly influence the response of reef coral symbioses to major environmental perturbations but may ultimately compromise ecosystem stability and function.
High sea surface temperatures often lead to coral bleaching wherein reef-building corals lose significant numbers of their endosymbiotic dinoflagellates (Symbiodiniaceae). These increasingly frequent bleaching events often result in large scale coral mortality, thereby devasting reef systems throughout the world. The reef habitats surrounding Palau are ideal for investigating coral responses to climate perturbation, where many inshore bays are subject to higher water temperature as compared with offshore barrier reefs. We examined fourteen physiological traits in response to high temperature across various symbiotic dinoflagellates in four common Pacific coral species, Acropora muricata , Coelastrea aspera , Cyphastrea chalcidicum and Pachyseris rugosa found in both offshore and inshore habitats. Inshore corals were dominated by a single homogenous population of the stress tolerant symbiont Durusdinium trenchii , yet symbiont thermal response and physiology differed significantly across coral species. In contrast, offshore corals harbored specific species of Cladocopium spp. (ITS2 rDNA type-C) yet all experienced similar patterns of photoinactivation and symbiont loss when heated. Additionally, cell volume and light absorption properties increased in heated Cladocopium spp., leading to a greater loss in photo-regulation. While inshore coral temperature response was consistently muted relative to their offshore counterparts, high physiological variability in D . trenchii across inshore corals suggests that bleaching resilience among even the most stress tolerant symbionts is still heavily influenced by their host environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.