The first aim of this paper is to establish the weak convergence rate of nonlinear two-time-scale stochastic approximation algorithms. Its second aim is to introduce the averaging principle in the context of two-time-scale stochastic approximation algorithms. We first define the notion of asymptotic efficiency in this framework, then introduce the averaged two-time-scale stochastic approximation algorithm, and finally establish its weak convergence rate. We show, in particular, that both components of the averaged two-time-scale stochastic approximation algorithm simultaneously converge at the optimal rate √ n.
We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil [1994. On the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504-1512]. We study the properties of these estimators and compare them with Rosenblatt's nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt's kernel estimator rather than any recursive estimator. A contrario, for estimation by confidence intervals, it is better to use a recursive estimator rather than Rosenblatt's estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.