We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil [1994. On the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504-1512]. We study the properties of these estimators and compare them with Rosenblatt's nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt's kernel estimator rather than any recursive estimator. A contrario, for estimation by confidence intervals, it is better to use a recursive estimator rather than Rosenblatt's estimator.
We propose an automatic selection of the bandwidth of the recursive kernel estimators of a probability density function defined by the stochastic approximation algorithm introduced by Mokkadem et al. (2009a). We showed that, using the selected bandwidth and the stepsize which minimize the MISE (mean integrated squared error) of the class of the recursive estimators defined in Mokkadem et al. (2009a), the recursive estimator will be better than the nonrecursive one for small sample setting in terms of estimation error and computational costs. We corroborated these theoretical results through simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.