Due to the importance of Salmonella spp. in poultry products, this study aimed to track its main contamination routes since slaughtering reception to processing of chicken end cuts. Samples from different steps of slaughtering and processing (n = 277) were collected from two chicken slaughterhouses (Sl1 and Sl2) located in Minas Gerais state, Brazil, and subjected to Salmonella spp. detection. The obtained isolates were subjected to serological identification and tested by PCR for specific Salmonella spp. genes (ompC and sifB). Also, Salmonella spp. isolates were subjected to XbaI macrorestriction and pulsed-field gel electrophoresis (PFGE). Sixty-eight samples were positive for Salmonella spp. and 172 isolates were obtained. Sl1 and Sl2 presented similar frequencies of Salmonella spp. positive samples during reception, slaughtering and processing (p > 0.05), except for higher frequencies in Sl1 for chicken carcasses after de-feathering and evisceration (p < 0.05). PFGE allowed the identification of cross contamination and persistence of Salmonella spp. strains in Sl1. The results highlighted the relevance of the initial steps of chicken slaughtering for Salmonella spp. contamination, and the pre-chilling of carcasses as an important controlling tool. In addition, the presence of Salmonella spp. in chicken end cuts samples represents a public health concern.
The type of sampling technique used to obtain food samples is fundamental to the success of microbiological analysis. Destructive and nondestructive techniques, such as tissue excision and rinsing, respectively, are widely employed in obtaining samples from chicken carcasses. In this study, four sampling techniques used for chicken carcasses were compared to evaluate their performances in the enumeration of hygiene indicator microorganisms. Sixty fresh chicken carcasses were sampled by rinsing, tissue excision, superficial swabbing, and skin excision. All samples were submitted for enumeration of mesophilic aerobes, Enterobacteriaceae, coliforms, and Escherichia coli. The results were compared to determine the statistical significance of differences and correlation (P < 0.05). Tissue excision provided the highest microbial counts compared with the other procedures, with significant differences obtained only for coliforms and E. coli (P < 0.05). Significant correlations (P < 0.05) were observed for all the sampling techniques evaluated for most of the hygiene indicators. Despite presenting a higher recovery ability, tissue excision did not present significant differences for microorganism enumeration compared with other nondestructive techniques, such as rinsing, indicating its adequacy for microbiological analysis of chicken carcasses.
Utensils and equipment from meat-processing facilities are considered relevant cross-contamination points of Listeria monocytogenes to foods, demanding tracking studies to identify their specific origins, and predict proper control. The present study aimed to detect L. monocytogenes in a beef-processing facility, investigating the diversity of serotypes and pulsotypes in order to identify the possible contamination routes. Surface samples from knives (n=26), tables (n=78), and employees hands (n=74) were collected before and during the procedures from a beef-processing facility, in addition to surface samples of end cuts: round (n=32), loin (n=30), and chuck (n=32). All samples were subjected to L. monocytogenes screening according ISO 11.290-1, and the obtained isolates were subjected to serotyping and pulsed-field gel electrophoresis. Listeria spp. were identified in all processing steps, in 61 samples, and L. monocytogenes was detected in 17 samples, not being found only in knives. Eighty-five isolates were identified as L. monocytogenes, from serotypes 1/2c (n=65), 4b (n=13), and 1/2b (n=7), being grouped in 19 pulsotypes. Considering these results, cross-contamination among hands, tables, and beef cuts could be identified. The obtained data indicated the relevance of cross-contamination in the beef-processing facility, and the occurrence of serotypes 1/2b and 4b in beef cuts distributed for retail sale is a public health concern.
Salmonella can contaminate finished products of butcher shops, mainly through cross-contamination of utensils exposed to raw materials. To identify the main sources of contamination with this foodborne pathogen in four butcher shop environments, surface samples were obtained from employees' hands, cutting boards, knives, floor of the refrigeration room, meat grinders, and meat tenderizers (32 samples per area) and analyzed for Salmonella using the International Organization for Standardization method 6579, with modifications. Suspect isolates were identified by PCR (targeting ompC), and confirmed Salmonella isolates were subjected to pulsed-field gel electrophoresis (after treatment with restriction enzyme XbaI), analyzed for the presence of virulence genes (invA, sefA, and spvC), and screened for resistance to 12 antimicrobials. Salmonella isolates was identified only on cutting boards (five samples) from three butcher shops. Fifteen isolates were confirmed as Salmonella belonging to four pulse types (similarity of 71.1 to 100%). The invA gene was detected in 13 isolates, and the sefA was found in 8 isolates; no isolate carried spvC. All tested isolates were resistant to clindamycin and sensitive to amikacin and cefotaxine, and all isolates were resistant to at least 3 of the 12 antimicrobials tested. The results indicate the importance of cutting boards as a source of Salmonella contamination in butcher shops. The presence of multidrug-resistant Salmonella strains possessing virulence genes highlights the health risks for consumers.
The quality and safety of meat products can be estimated by assessing their contamination by hygiene indicator microorganisms and some foodborne pathogens, with Listeria monocytogenes as a major concern. To identify the main sources of microbiological contamination in the processing environment of three butcher shops, surface samples were obtained from the hands of employees, tables, knives, inside butcher displays, grinders, and meat tenderizers (24 samples per point). All samples were subjected to enumeration of hygiene indicator microorganisms and detection of L. monocytogenes, and the obtained isolates were characterized by their serogroups and virulence genes. The results demonstrated the absence of relevant differences in the levels of microbiological contamination among butcher shops; samples with counts higher than reference values indicated inefficiency in adopted hygiene procedures. A total of 87 samples were positive for Listeria spp. (60.4%): 22 from tables, 20 from grinders, 16 from knives, 13 from hands, 9 from meat tenderizers, and 7 from butcher shop displays. Thirty-one samples (21.5%) were positive for L. monocytogenes, indicating the presence of the pathogen in meat processing environments. Seventy-four L. monocytogenes isolates were identified, with 52 from serogroups 1/2c or 3c and 22 from serogroups 4b, 4d, 4a, or 4c. All 74 isolates were positive for hlyA, iap, plcA, actA, and internalins (inlA, inlB, inlC, and inlJ). The establishment of appropriate procedures to reduce microbial counts and control the spread of L. monocytogenes in the final steps of the meat production chain is of utmost importance, with obvious effects on the quality and safety of meat products for human consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.