This article describes the application of spatial statistical epidemiological modeling and its inference and applies it to COVID-19 case data, looking at it from a spatial perspective, and considering time-series data. COVID-19 cases in Indonesia are increasing and spreading in all provinces, including Kalimantan. This study uses applied mathematics and spatiotemporal analysis to determine the factors affecting the constant rise of COVID-19 cases in Kalimantan. The spatiotemporal analysis uses the Geographically Temporally Weighted Regression (GTWR) model by developing a spatial and temporal interaction distance function. The GTWR model was applied to data on positive COVID-19 cases at a scale of 56 districts/cities in Kalimantan between the period of January 2020 and August 2021. The purpose of the study was to determine the factors affecting the cumulative increase in COVID-19 cases in Kalimantan and map the spatial distribution for 56 districts/cities based on the significant predictor variables. The results of the study show that the GTWR model with the development of a spatial and temporal interaction distance function using the kernel Gaussian fixed bandwidth function is a better model compared to the Ordinary Least Squares (OLS) model. According to the significant variables, there are various factors affecting the rise in cases of COVID-19 in the region of Kalimantan, including the number of doctors, the number of TB cases, the percentage of elderly population, GRDP, and the number of hospitals. The highest factors that affect COVID-19 cases are the high number of TB cases, population density, and the lack of health services. Furthermore, an area map was produced on the basis of the significant variables affected by the rise in COVID-19 cases. The results of the study provide local governments with decision-making recommendations to overcome COVID-19-related issues in their respective regions.
Methods -This study aimed to analyze the preparedness of government hospitals after natural disasters 28 September 2018. Methods -This research uses descriptive quantitative research design using primary data from questionnaires Hospital Safety Index 2015. The sampling technique used purposive sampling. The sample in this research were 102 people comprising members of the Disaster Management Team in hospitals. Torabelo, Undata Hospital, Hospital Anutapura, and Result -The results of this study indicate Torabelo Hospital has a score of 0.37, hospitals Undata has a score of 0.45, and hospitals Anutapura has a score of 0.46. Conclusion: Third hospitalis included in the Classification B (0.36-0.65). Classification B hospital that can function in emergency response but did not function optimally because disaster management is not readyso in the near term should be evaluated and carried out repairs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.