Pharmaceuticals in
the environment have received increased attention
over the past decade, as they are ubiquitous in rivers and waterways.
Concentrations are in sub-ng to low μg/L, well below acute toxic
levels, but there are uncertainties regarding the effects of chronic
exposures and there is a need to prioritise which pharmaceuticals
may be of concern. The read-across hypothesis stipulates that a drug
will have an effect in non-target organisms only if the molecular
targets such as receptors and enzymes have been conserved, resulting
in a (specific) pharmacological effect only if plasma concentrations
are similar to human therapeutic concentrations. If this holds true
for different classes of pharmaceuticals, it should be possible to
predict the potential environmental impact from information obtained
during the drug development process. This paper critically reviews
the evidence for read-across, and finds that few studies include plasma
concentrations and mode of action based effects. Thus, despite a large
number of apparently relevant papers and a general acceptance of the
hypothesis, there is an absence of documented evidence. There is a
need for large-scale studies to generate robust data for testing the
read-across hypothesis and developing predictive models, the only
feasible approach to protecting the environment.
Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation.
From a flounder pituitary cDNA library, cDNA clones encoding a 28-kDa glycoprotein produced by the pars intermedia of the pituitary were isolated and characterized. Nucleotide sequencing demonstrated a precursor of the 28-kDa protein, which consisted of 231 amino acid residues, to be cleaved into a signal peptide (24 amino acids) and a mature protein (207 amino acids) containing one N-glycosylation site. By comparison of amino acid sequences, the 28-kDa protein was found to be distantly and similarly related to growth hormone and prolactin. Consequently, it was named somatolactin. Somatolactin mRNAs were specifically expressed as 1.2 and 1.8 kb poly(A)+ RNAs in flounder pituitary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.