This paper presents a vibration-based model updating procedure for historical masonry structures which have suffered severe damage due to seismic events.This allows gathering in-depth insights on the current condition of damaged buildings, which can be beneficial for the knowledge of their actual structural behaviour and, consequently, for the design of repairing and strengthening interventions. The methodology, based on the experimentally identified modal parameters, is tested on the San Felice sul Panaro medieval fortress, which was heavily damaged by the 2012 Emilia earthquake. The finite element mesh of the structure in its post-quake condition is generated by means of a nonstandard semi-automatic mesh generation procedure based on a laser scanner points cloud. Ambient vibration testing is performed on the main tower of the fortress. Mechanical properties of the tower and the level of connections with the rest of the fortress in its current damaged state are investigated. To fully characterize the actual behaviour of the tower in operational condition, mesh elements corresponding to the damaged masonry are identified and different material properties are assigned to them. This allows to account for the effect of damage and cracks, which appeared essential in the calibration process. The updating procedure is carried out by means of an advanced surrogate-assisted evolutionary algorithm designed for reducing the computational effort.
This paper addresses the modal and structural identification of the historical masonry bell tower of Ficarolo, in Italy. After the seismic sequence of May 2012, the tower reported a serious damage pattern. Retrofitting interventions were designed and they mainly consisted in the rebuilding of cracked zones and the strengthening of masonry walls with carbon bars embedded in the masonry with epoxy resin. Afterwards, a continuous dynamic monitoring system has been installed on the tower. From the recorded structural response under ambient excitation, the dynamic characteristics of the tower are identified using Operational Modal Analysis techniques. Results of the first months of continuous monitoring are presented in this paper. Moreover, in order to analyse the evolution of the structural behaviour, the effect of changing temperature on the identified natural frequencies is investigated. The experimental modal parameters are also used to identify the elastic modulus of the reinforced masonry through the calibration of a Finite Element (FE) model of the tower. In addition, the influence of the soil-foundation system on the structural behaviour is evaluated. The calibration procedure is performed adopting an improved surrogate-assisted evolutionary strategy. The calibrated FE model can be adopted to simulate the structural response to far-field earthquakes. Moreover, the monitoring system can give valuable information on the structural behaviour and the structural health in the case of seismic events.
Abstract. This paper describes the experimental tests and numerical analyses performed to characterize the dynamic behaviour of the principal tower of the San Felice sul Panaro Fortress (Modena, Italy). After the Emilia earthquake that occurred in 2012, the Fortress reported serious damage, such as severe cracks on the walls and collapses of several towers and the roof. As a part of a research that aims at evaluating the vulnerability of the Fortress and designing retrofitting interventions, full-scale ambient vibration tests were performed to evaluate the dynamic properties of the principal tower. Afterwards, a Finite Element (FE) model is calibrated to obtain a good match between the numerical and experimental modal properties. The optimization process is carried out through an improved surrogate-assisted evolutionary strategy. Due to the serious damage of the Fortress, the effective stiffness of the cracked masonry and the efficiency of connection at the interface between the principal tower and the rest of the Fortress are considered the main uncertain quantities to be calibrated. A multi-objective optimization is performed, considering the frequency and mode shape residuals. These are defined as the difference between experimental and numerical modal properties. The multi-objective optimization is reduced to a series of a single-objective optimization adopting the weighted sum method. The set of optimal solutions that form the Pareto front is obtained performing the optimization for different values of the weighting factors. Then, two criteria are used and compared in order to find the preferred solution among the Pareto front solutions. Finally, a comparison of the identified structural parameters obtained varying the weighting factors for natural frequencies and mode shapes in the optimization process is presented, highlighting the importance of a proper choice of the weighting factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.