ObjectiveThe most common hereditary prion disease is human Creutzfeldt-Jakob disease (CJD), associated with a mutation in the prion gene resulting in a glutamic acid to lysine substitution at position 200 (E200K) in the prion protein. Models of E200K CJD in transgenic mice have proven interesting but have limitations including inconsistencies in disease presentation, requirement for mixed species chimeric protein constructs, and the relatively short life span and time to disease onset in rodents. These factors limit research on the mechanism by which the mutation drives disease development. Therefore, our objective was to provide the first assessment of cattle carrying the homologous mutation, E211K, as a system for investigating longer-term disease mechanisms. The E211K substitution was associated with a case of bovine spongiform encephalopathy from 2006.ResultsWe assessed the molecular properties of bovine E211K prion protein, characterized the molecular genetics of a population of cattle E211K carriers (offspring of the original EK211 cow) in relation to findings in humans, and generated preliminary evidence that the impacts of copper-induced oxidative stress may be different in cattle as compared to observations in transgenic mouse models. The cattle E211K system provides the opportunity for future analysis of physiological changes over time.Electronic supplementary materialThe online version of this article (10.1186/s13104-017-3085-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.