Temperature‐dependent studies of the electrical and optical properties of cross‐linked PbS nanocrystal (NC) solar cells can provide deeper insight into their working mechanisms. It is demonstrated that the overall effect of temperature on the device efficiency originates from the temperature dependence of the open‐circuit voltage and the short‐circuit current, while the fill factor remains approximately constant. Extensive modeling provides signs of band‐like transport in the inhomogeneously coupled NC active layer and shows that the charge transport is dominated by diffusion. Moreover, via low temperature absorption and photoluminescence (PL) measurements, it is shown that the optical properties of PbS thin films before and after benzenedithiol (BDT) treatment exhibit very distinct behavior. After BDT treatment, both the optical density (OD) and PL are shifted to lower energies, indicating the occurrence of electronic wave function overlap between adjacent NCs. Decrease of the temperature leads to additional red‐shift of the OD and PL spectra, which is explained by the well‐known temperature dependence of the PbS NCs' bandgap. Moreover, BDT treated PbS NCs show unusual properties, such as decrease of the PL signal and broadening of the spectra at low temperatures. These features can be attributed to the partial relaxation of the quantum confinement and the opening of new radiative and nonradiative pathways for recombination at lower temperatures due to the presence of trap states.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Photosynthesis is Nature's major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum. Inspired by the existence of natural phycobilisome light-harvesting antennae, we have widened the absorption spectrum of PSI by covalent attachment of synthetic dyes to the protein backbone. Steady-state and time-resolved photoluminescence reveal that energy transfer occurs from these dyes to PSI. It is shown by oxygen-consumption measurements that subsequent charge generation is substantially enhanced under broad and narrow band excitation. Ultimately, surface photovoltage (SPV) experiments prove the enhanced activity of dye-modified PSI even in the solid state.
The tendency of amylose to form inclusion complexes with guest molecules has been an object of wide interest due to its fundamental role in food processing. Here we investigated the features of starch granules from several botanical sources using confocal laser scanning microscopy (CLSM) and uncovered the interactions between amylose and fluorescent lipophilic molecules below gelatinization temperature. In natural starch granules, we reveal complexation of lipophilic molecules labeled with fluorescein with amylose located at the periphery of the granules, appearing as a bright well‐defined luminescent rim. This phenomenon is occurring below the gelatinization point for very low concentration of aliphatic chains. Control experiments performed with the fluorescein dye show staining of the whole granule, evidencing non‐specific interactions. Similarly, experiments performed with waxy granules show a broader luminescent rim when interacting with the lipid‐dye molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.