The ability to change between yeast and hyphal cells (dimorphism) is known to be a virulence property of the human pathogen Candida albicans. The pathogenesis of disseminated candidosis involves adhesion and penetration of hyphal cells from a colonized mucosal site to internal organs. Parenchymal organs, such as the liver and pancreas, are invaded by C. albicans wild-type hyphal cells between 4 and 24 h after intraperitoneal (i.p.) infection of mice. In contrast, a hypha-deficient mutant lacking the transcription factor Efg1 was not able to invade or damage these organs. To investigate whether this was due to the inability to undergo the dimorphic transition or due to the lack of hypha-associated factors, we investigated the role of secreted aspartic proteinases during tissue invasion and their association with the different morphologies of C. albicans. Wild-type cells expressed a distinct pattern of SAP genes during i.p. infections. Within the first 72 h after infection, SAP1, SAP2, SAP4, SAP5, SAP6, and SAP9 were the most commonly expressed proteinase genes. Sap1 to Sap3 antigens were found on yeast and hyphal cells, while Sap4 to Sap6 antigens were predominantly found on hyphal cells in close contact with host cells, in particular, eosinophilic leukocytes. Mutants lacking EFG1 had either noticeably reduced or higher expressed levels of SAP4 to SAP6 transcripts in vitro depending on the culture conditions. During infection, efg1 mutants had a strongly reduced ability to produce hyphae, which was associated with reduced levels of SAP4 to SAP6 transcripts. Mutants lacking SAP1 to SAP3 had invasive properties indistinguishable from those of wild-type cells. In contrast, a triple mutant lacking SAP4 to SAP6 showed strongly reduced invasiveness but still produced hyphal cells. When the tissue damage of liver and pancreas caused by single sap4, sap5, and sap6 and double sap4 and -6, sap5 and -6, and sap4 and -5 double mutants was compared to the damage caused by wild-type cells, all mutants which lacked functional SAP6 showed significantly reduced tissue damage. These data demonstrate that strains which produce hyphal cells but lack hypha-associated proteinases, particularly that encoded by SAP6, are less invasive. In addition, it can be concluded that the reduced virulence of hypha-deficient mutants is not only due to the inability to form hyphae but also due to modified expression of the SAP genes normally associated with the hyphal morphology.
SummaryThe pathogenic fungus Candida albicans commonly causes mucosal surface infections. In immunocompromised patients, C. albicans may penetrate into deeper tissue, enter the bloodstream and disseminate within the host causing life-threatening systemic infections. In order to elucidate how C. albicans responds to the challenge of a blood environment, we analysed the transcription profile of C. albicans cells exposed to human blood using genomic arrays and a cDNA subtraction protocol. By combining data obtained with these two methods, we were able to identify unique sets of different fungal genes specifically expressed at different stages of this model that mimics bloodstream infections. By removing host cells and incubation in plasma, we were also able to identify several genes in which the expression level was significantly influenced by the presence of these cells. Differentially expressed genes included those that are involved in the general stress response, antioxidative response, glyoxylate cycle as well as putative virulence attributes. These data point to possible mechanisms by which C. albicans ensures survival in the hostile environment of the blood and how the fungus may escape the bloodstream as an essential step in its systemic dissemination.
SummaryThe human pathogenic fungus Candida albicans can cause a wide range of infections and invade multiple organs. To identify C. albicans genes that are expressed during invasion of the liver, we used genome-wide transcriptional profiling in vivo and ex vivo. By analysing the different phases of intraperitoneal infection from attachment to tissue penetration in a time-course experiment and by comparing the profiles of an invasive with those of a non-invasive strain, we identified genes and transcriptional pattern which are associated with the invasion process. This includes genes involved in metabolism, stress, and nutrient uptake, as well as transcriptional programmes regulating morphology and environmental sensing. One of the genes identified as associated with liver invasion was DFG16, a gene crucial for pH-dependent hyphal formation, correct pH sensing, invasion at physiological pH and systemic infection.
Determination of the MIC in vitro is often used as the basis for predicting the clinical efficacy of antibiotics. Listeriae are uniformly susceptible in vitro to most common antibiotics except cephalosporins and fosfomycin. However, the clinical outcome is poor. This is partially because listeriae are refractory to the bactericidal mechanisms of many antibiotics, especially to ampicillin-amoxicillin, which still is regarded as the drug of choice. A true synergism can be achieved by adding gentamicin. Another point is that listeriae are able to reside and multiply within host cells, e.g., macrophages, hepatocytes, and neurons, where they are protected from antibiotics in the extracellular fluid. Only a few agents penetrate, accumulate, and reach the cytosol of host cells, where the listeriae are found. Furthermore, certain host cells may exclude antibiotics from any intracellular compartment. Thus, determination of the antibacterial efficacy of a drug against listeriae in cell cultures may be a better approximation of potential therapeutic value. Certain host cells may have acquired the property of excluding certain antibiotics, for example macrolides, from intracellular spaces, which might explain therapeutic failures of antibiotic therapy in spite of low MICs. Animal models do not completely imitate human listeriosis, which is characterized by meningitis, encephalitis, soft tissue and parenchymal infections, and bacteremia. Meningitis produced in rabbits is a hyperacute disease, whereby most listeriae lie extracellularly, fairly accessible to antibiotics that can cross the blood-cerebrospinal fluid barrier. In the murine model of systemic infection, Listeria monocytogenes is located mainly within macrophages and parenchymal cells of the spleen and liver, hardly accessible to certain drugs, such as ampicillin and gentimicin. The therapeutic efficacy of drugs clearly depends on the model used. Thus, for example, the combination of ampicillin with gentamicin acts synergistically in the rabbit meningitis model but not in the mouse model. Since conventional antimicrobial therapy with antibiotics is not satisfactory, particularly in the immunocompromised host (about 30% of patients with listeriosis die in spite of a rational choice of antibiotics), other possibilities must be considered for therapy as well as prevention. Indeed, listeriae are highly susceptible to several endogenous antibiotics, such as defensins. Bacteriocins produced by related bacterial species, e.g., lactobacilli and enterococci, are rapidly bactericidal. However, unfortunately, the use of such alternative measures along with immunization and immunmodulation is not yet feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.