Microencapsulation of lipase from Yarrowia lipolytica IMUFRJ 50682 was performed by ionotropic gelation with sodium alginate. Sodium alginate, calcium chloride and chitosan concentrations as well as complexation time were evaluated through experimental designs to increase immobilization yield (IY) and immobilized lipase activity (ImLipA) using p-nitrophenyl laurate as substrate. To adjust both parameters (IY and ImLipA), the desirability function showed that microcapsule formation with 3.1%(w/v) sodium alginate, 0.19%(w/v) chitosan, 0.14 M calcium chloride, and 1 min complexation time are ideal for maximal immobilization yield and immobilized lipase activity. A nearly twofold enhancement in Immobilization yield and an increase up to 280 U/g of the lipase activity of the microcapsules were achieved using the experimental design optimization tool. Chitosan was vital for the high activity of this new biocatalyst, which could be reused a second time with about 50% of initial activity and for four more times with about 20% of activity.
Pomegranate-seed residue (PSR) was used in a new strategy for the simultaneous production of Yarrowia lipolytica lipase by submerged fermentation and its immobilization by adsorption. This biocatalyst—the fermented solid residue containing the adsorbed lipase (fermPSR)—was evaluated in hydrolysis reactions and in structured lipid synthesis. In shake flasks, yeast extract and urea were the best nitrogen sources for lipase production with PSR and their simultaneous use increased the lipase production even further. This result was confirmed in a 3.5-liter bioreactor, with lipase activity in an extracellular medium of 40 U/mL. A maximum reaction rate (Vmax) of 49.5 µmol/min/g, a Michaelis–Menten constant (Km) of 207 µmol/L, and a turnover number (Kcat) of 130 s−1 were determined for the new biocatalyst, fermPSR, for the hydrolysis of p-nitrophenyl laurate (p-NPL) into p-nitrophenol. The conversion of p-NPL into p-nitrophenol in subsequent reactions confirmed fermPSR’s potential for industrial hydrolytic reactions. The production of structured lipids from vegetable oil and free fatty acids by fermPSR evidences the versatility of this new biocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.