Mechanical stimuli play important roles on the growth, development, and behavior of tissue. A simple and novel paper-based in vitro tissue chip was developed that can deliver two types of mechanical stimuli-local compression and shear flow-in a programmed manner. Rat vascular endothelial cells (RVECs) were patterned on collagen-coated nitrocellulose paper to create a tissue chip. Localized compression and shear flow were introduced by simply tapping and bending the paper chip in a programmed manner, utilizing an inexpensive servo motor controlled by an Arduino microcontroller and powered by batteries. All electrical compartments and a paper-based tissue chip were enclosed in a single 3D-printed enclosure, allowing the whole device to be independently placed within an incubator. This simple device effectively simulated in vivo conditions and induced successful RVEC migration in as early as 5 h. The developed device provides an inexpensive and flexible alternative for delivering mechanical stimuli to other in vitro tissue models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.