a b s t r a c tRecently the United States Environmental Protection Agency qualified biogas from landfills and anaerobic digesters as a cellulosic transportation biofuel under the expanded Renewable Fuel Standard (RFS2). Biogas is a renewable fuel that can generate Renewable Identification Number credits for the producer. The wastewater industry may not be able to keep pace with this opportunity. Less than 10% of WWTPs in the US have currently produced biogas for beneficial use. Supporting growth of the biogas industry requires implementation of new practices and policies. In this review, the barriers, gaps, and challenges in deploying biogas production technology are identified. Issues are classified as economic, technical, social or regulatory issues. Some of the critical challenges to the economics of digester operations are the slow rate of biogas generation, the low energy content of the biogas, and the costs to upgrade the biogas.Currently there is little biogas utilization at US WWTPs. Most biogas is flared while some is used for onsite process heat and power production. Case studies of co-digestion of biosolids with organic wastes at field-scale show the use of co-digestion could overcome significant economic challenges including higher methane yield, more efficient digester volume utilization and reduced biosolids production. These findings could provide guidance in retrofitting existing facilities or in designing new biogas production and utilization systems. The RFS2 ruling increases market certainty, hence reduces risk. The evaluation of applications of co-digestion at WWTP scales ranging from 1 million gallons per day (MGD) to 375 MGD determined its potential feasibility for different types of digester operation, organic waste and loading rate as well as effectiveness of providing energy self-sufficiency at the WWTPs. This work could improve economics of anaerobic digestion at WWTPs, enabling viable and sustainable biogas industry and offsetting costs for wastewater management.
We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.