The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques.
Nanocellulose has been recently proposed as a novel consolidant for historical papers. Its use for painting canvas consolidation, however, remains unexplored. Here, we show for the first time how different nanocelluloses, namely mechanically isolated cellulose nanofibrils (CNF), carboxymethylated cellulose nanofibrils (CCNF) and cellulose nanocrystals (CNC), act as a bio-based alternative to synthetic resins and other conventional canvas consolidants. Importantly, we demonstrate that compared to some traditional consolidants, all tested nanocelluloses provided reinforcement in the adequate elongation regime. CCNF showed the best consolidation per added weight; however, it had to be handled at very low solids content compared to other nanocelluloses, exposing canvases to larger water volumes. CNC reinforced the least per added weight but could be used in more concentrated suspensions, giving the strongest consolidation after an equivalent number of coatings. CNF performed between CNC and CCNF. All nanocelluloses showed better consolidation than lining with synthetic adhesive (Beva 371) and linen canvas in the elongation region of interest.
POSS-PCU nanocomposites have enhanced interfacial biocompatibility and better biological stability as compared with conventional silicone biomaterials, thus making them safer as tissue implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.