The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation a on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.
We discuss the propagation and fractionalization of localized charges on the edges of quantum Hall bars of variable widths, where interactions between the edges give rise to Luttinger liquid behavior with a non-trivial interaction parameter g. We focus in particular on the separation of an initial charge pulse into a sharply defined front charge and a broader tail. The front pulse describes an adiabatically dressed electron which carries a non-integer charge, which is √ g times the electron charge. We discuss how the presence of this fractional charge can, in principle, be detected through measurements of the noise in the current created by tunneling of electrons into the system. The results are illustrated by numerical simulations of a simplified model of the Hall bar.
Finite temperature Casimir theory of the Dirichlet scalar field is developed, assuming that there is a conventional Casimir setup in physical space with two infinitely large plates separated by a gap R and in addition an arbitrary number q of extra compacified dimensions. As a generalization of earlier theory, we assume in the first part of the paper that there is a scalar 'refractive index' N filling the whole of the physical space region. After presenting general expressions for free energy and Casimir forces we focus on the low temperature case, as this is of main physical interest both for force measurements and also for issues related to entropy and the Nernst theorem. Thereafter, in the second part we analyze dispersive properties, assuming for simplicity q = 1, by taking into account dispersion associated with the first Matsubara frequency only. The medium-induced contribution to the free energy, and pressure, is calculated at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.